

Mellon Fedora Technical Specification

(December 2002)

Fedora Technical Specification
December 2002

Introduction... 5

Mellon Fedora System Overview ... 5
Background of the Project .. 5
Summary of Functionality .. 5

Architecture... 7

Digital Object Architecture.. 7
Digital Object Architecture Summary .. 7

Figure 1. Fedora Digital Object .. 7
Digital Object Components... 8

Persistent Identifier (PID) ... 8
System Metadata... 8
Datastreams... 9
Disseminators.. 11

Special Digital Objects ... 13
Figure 2. Behavior Definition and Behavior Mechanism Objects 15

XML Encoding of Digital Objects.. 15

Repository Architecture .. 16
Repository Architecture Summary ... 16

Figure 3. Macro-Level System Diagram ... 16
Fedora Management Service... 17
Fedora Access Service .. 17
Client Connectivity ... 18

Public APIs for Fedora Services ... 19

Management Service (API-M) .. 19
API-M Definition.. 19

Object Management Methods ... 19
Component Management Methods ... 22

Access Service (API-A) .. 33
API-A Definition .. 33

Access Methods .. 33

System Implementation... 37

Summary... 37
Figure 4. Detailed System Diagram .. 38

Digital Objects... 39
XML Encoding using the METS Schema .. 39
Mapping to METS XML Schema... 39

Table 1. Mapping to METS XML Schema Example .. 39
Digital Object Status Codes (Object State)... 42

2 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Table 2. Digital Object Status Codes... 42
Object Component State (Deletion, Withdrawal, and Inactivation 43

Table 3. Digital Object Component States .. 43
Versioning of Digital Objects ... 43

Recording an Audit Trail in Object’s System Metadata... 43
Versioning of Datastreams.. 44
Versioning of Disseminators... 46
Versioning of Behavior Definition and Mechanism Objects.. 46
Table 4. Versioning of Behavior Definition and Mechanism Objects 47

Management Subsystem.. 48
API-M Implementation... 49

Object Management Module... 49
Component Management Module... 51

Internal PID Generation Module .. 55
PID Generation Interface Definition... 56
PID Generator Implementation... 56

PID Syntax .. 56
Method Implementation.. 57

Object Validation Module... 57
Table 5. Fedora Integrity Rules ... 58

Security Subsystem.. 59

Access Subsystem... 60
API-A Implementation.. 60

Object Reflection Module... 60
Dissemination Module .. 61

WSDL for Behavior Mechanisms... 61
Figure 5. WSDL for Behavior Mechanism Objects ... 63

Storage Subsystem... 63
Internal Storage Interface Definition .. 63

Figure 6. Top-down Request Flow Diagram ... 64
Persistent Storage Implementation ... 64

Digital Object XML Storage... 64
Digital Object Registry Database.. 65
Fedora Dissemination Database.. 65

Future: PID Resolver Service Implementation.. 65
General.. 65

Notes ... 66

Appendices ... 66

Appendix A: Example Digital Object.. 66

Appendix B: Example Behavior Definition Object .. 66

Appendix C: Example Behavior Mechanism Object... 66

3 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Appendix D: Database Schema ... 66

Appendix E: Glossary ... 66

4 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Introduction

1.0 Mellon Fedora System Overview

1.1 Background of the Project

In September of 2001, the University of Virginia received a grant of $1,000,000 from
the Andrew W. Mellon Foundation to enable the Library to collaborate with Cornell
University to build a sophisticated digital object repository system based on the
Flexible Extensible Digital Object and Repository Architecture (Fedora). Fedora was
originally developed as a research project at Cornell University and was successfully
implemented at Virginia in 2000 as a prototype system to provide management and
access to a diverse set of digital collections.

The Mellon grant was based on the success of the Virginia prototype and the vision of
a new open-source version of Fedora that exploits the latest web technologies.
Virginia and Cornell have joined forces to build this robust implementation of the
Fedora architecture with a full array of management utilities necessary to support it.
A deployment group, representing seven institutions in the US and the UK, will
evaluate the system by applying it to testbeds of their own collections. The
experiences of the deployment group will be used to fine-tune the software in later
phases of the project.

1.2 Summary of Functionality

The Mellon Fedora System consists of two fundamental entities: (1) the underlying
Fedora digital object architecture and (2) the Fedora repository. The digital object
forms the core of Fedora architecture, providing a framework that enables the
aggregation of both content (i.e., data and metadata) and behaviors (i.e., services) that
can also be distributed across multiple platforms via a URI. The Fedora repository
provides management and access services for these digital objects. Clients interact
with the repository through the management and access services. The Fedora system
represents a full-featured system that is a foundation upon which interoperable web-
based digital libraries can be built.

The goal of the new Mellon Fedora System specification is to create an
implementation of Fedora that builds on the designs of the original Cornell reference
implementation and Virginia prototype, is highly compatible with the web
environment, is built with established standards where possible, and uses freely
available technologies. Specifically, the original Fedora model has been reinterpreted
using XML and Web services technologies. Our new implementation has the
following key features:

• The Fedora repository system is exposed as a Web service and is described

using Web Services Description Language (WSDL).

5 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

• Digital Object behaviors are implemented as linkages to distributed web services
that are expressed using WSDL and implemented via HTTP GET/POST or
SOAP bindings.

• Digital objects are encoded and stored as XML using the Metadata Encoding
and Transmission Standard (METS).

• Digital objects support versioning to preserve access to former instantiations of
both content and services.

The Mellon Fedora System is exposed as two related web services: the Fedora
Management service (API-M) and the Fedora Access service (API-A). The service
interfaces are expressed in XML using WSDL, as are all auxiliary services included
in the architecture. The Fedora Management service defines an open interface for
administering the repository, including creating, modifying, and deleting digital
objects or components within digital objects. The Fedora Access service defines an
open interface for accessing digital objects and the behaviors (i.e., services)
associated with them. The open interfaces for the Management and Access APIs
enable developers to more easily develop client tools that interact with the repository
system or to completely re-implement their own version of the repository system.

This document is divided into four main sections: (1) Introduction, (2) Architecture,
(3) Public APIs for Fedora Services, and (4) System Implementation. The
Architecture section describes the key architectural components of the Fedora digital
object and repository. The Public APIs section describes the open interfaces that
define the management and access services. The final section describes a specific
implementation of the Mellon Fedora System currently underway by the Fedora
development team. The diagram in Section 6.0 depicts the various modules that
comprise this implementation of the Fedora system.

6 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Architecture

2.0 Digital Object Architecture

2.1 Digital Object Architecture Summary

The principal entity of the Fedora architecture is the digital object. As outlined in
Figure 1, a Fedora digital object is comprised of several components including a
unique persistent identifier (PID), one or more disseminators, system metadata,
and one or more datastreams. A significant characteristic of the Fedora digital
object is how it enables the aggregation of content (i.e., data and metadata) and
behaviors (i.e., services). Both content and behaviors can be distributed and
referenced via a URI. As depicted in Figure 1, datastreams represent content and
disseminators represent services. A Fedora repository provides both access and
management services for digital objects.

Globally unique persistent idPersistent ID (PID)

Disseminators

System Metadata

Datastreams

Public view: access methods
for obtaining disseminations
of digital object content

Internal view: metadata necessary to
manage the object

Protected view: content that
makes up the "basis" of the object

Figure 1. Fedora Digital Object

From an access perspective, the architecture fulfills two basic functions: (1) it
exposes both generic and extensible behaviors for digital objects (i.e., as sets of
method definitions), and (2) it performs disseminations of content in response to a
client's request for one of these methods. A dissemination is defined as a stream of
data that manifests a view of the digital object's content.

Disseminators are used to provide public access to digital objects in an
interoperable and extensible manner. Each disseminator defines a set of methods

7 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

through which the object's datastreams can be accessed. For example, there are
simple disseminators that define methods for obtaining different renditions of
images. There are more complex disseminators that define methods for
interacting with complex digital creations such as multi-media course packages (e.g.,
GetSyllabus, GetLectureVideo). Finally, there are disseminators that define
methods for transforming content (e.g., translating a text between different languages
or formats). A disseminator is said to subscribe to a behavior definition,
which is an abstract service definition consisting of a set of methods for presenting or
transforming the content of a digital object. A disseminator uses a behavior
mechanism, which is an external service implementation of the methods to which the
disseminator subscribes. A disseminator also defines the binding relationships
between a behavior mechanism and datastreams in the object.

2.2 Digital Object Components

2.2.1 Persistent Identifier (PID) – A unique, persistent identifier for the digital

object. A PID must be guaranteed unique across all Fedora repositories to
prevent identity clashes when multiple repositories are running in parallel, or
when repositories are federated to form distributed digital libraries across
multiple institutions.

2.2.2 System Metadata – The System Metadata for a digital object is the metadata

that must be recorded with every digital object to facilitate the management of
that object. System metadata is distinct from other metadata that is stored in
the digital object as content. System metadata is the metadata that is required
by the Fedora repository architecture. All other metadata (e.g., descriptive
metadata, technical metadata) is considered optional from the architectural
standpoint, and is treated as a datastream in a digital object. The following
elements are defined as System Metadata for a digital object:

2.2.2.1 Digital Object Label (doLabel) – a descriptive label for the digital

object appropriate for presentation to humans.

2.2.2.2 Content Model Type Identifier (contentModelID) – a unique
identifier that signifies the particular Content Model upon which the
object is built (e.g., the UVa standard image content model, or the
UVa TEI book content model).

2.2.2.3 Digital Object Created DateTime (createdDT) – the date and time

that the digital object was originally created.

2.2.2.4 Digital Object Last Modified DateTime (modDT) – the date and
time of the most recent change to the digital object. Note that if a
digital object is marked as "deleted" in the record status element (see
section 7.3), then the Last Modified DateTime essentially constitutes
the date of deletion.

8 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

2.2.2.5 Digital Object Status (status) – a flag that indicates the current state
of an object. See Section 7.3 for a list of valid object and object
component state values.

2.2.2.6 Digital Object Component Audit Trail – The System Metadata

records transaction records for all changes made to the digital object.
The audit trail records are expressed in XML in accordance with the
Fedora Audit Trail Schema (fedoraAudit.xsd). An audit trail record
describes an action, date, responsible agent, process used, and
justification for action.

• Internal Identifier (auditTrailID) – an identifier for the audit
trail section of the object. This is an internal component
identifier that is unique within the object, and not considered a
public identifier.

• Transaction Record ()
• Internal Identifier (auditRecordID) – an identifier

for the audit trail record within the audit trail section of
the object. This is an internal component identifier that
is unique within the object, and not considered a public
identifier.

• Record (fedoraAudit:record) – every change to either
a datastream or a disseminator requires an audit
record to be inserted into the audit trail section of the
digital object. The datastream or disseminator to
which the record pertains must have a link to the audit
record.

2.2.3 Datastreams – a datastream is the component of a digital object that

represents digital content. In other words, datastreams represent the digital
stuff that is the essence of the digital object (e.g., digital images, encoded
texts, audio recordings). All forms of metadata, except system metadata, are
also treated as content, and are therefore represented as datastreams in a
digital object. All datastreams have the potential to be disseminated from
a digital object. A datastream can reference any type of content, and that
content can be stored either locally or remotely to the repository system. All
datastreams have the following attributes:

• Internal Identifier (datastreamID) – the identifier for a

datastream within a digital object. This identifier is common to all
versions of a particular datastream. This is an internal component
identifier that is unique within the object, and not considered a public
identifier.

• Version Identifier (datastreamVersionID) – the identifier for a
particular version of a datastream within a digital object.

• Datastream Label (dsLabel) – a human readable label describing the
datastream.

9 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

• MIME (dsMIME) – the MIME type of the content byte stream
• Created Date (dsCreateDT) – the date and time the datastream

component was created in the digital object.
• Size (dsSize) – size of content byte stream in bytes
• Datastream Control Group Type (dsControlGroupType) – the

control group type of the content datastream. There are three possible
control group types: Referenced External Content (E), Repository-
Managed Content (M), or Implementor-Defined XML Metadata (X).

• Content (dsContent) – the actual byte streams that the datastream
component represents. A datastream may point to content that is
stored outside the repository system, or it may point to content that is
under the custodianship of the repository. Some content may be
XML-encoded metadata that is tightly bound to a digital object.
Fedora defines three types of datastreams to accommodate these
three content scenarios:

2.2.3.1 Referenced External Content – A form of datastream that points

to content that is outside the custodianship of the repository. It is used
to reference remote content that is outside the container of the digital
object. An acceptable pointer for referencing content is a URL.
External Referenced Content datastreams can point to any type of
content (e.g., images, text documents, video, executables, etc.). It
should be noted that metadata can also be stored as a Referenced
External Content datastream. In cases where metadata is not
available in an XML format, or when it is desirable to keep metadata
stored in separate files, that metadata can be stored by reference. The
fact that the datastream content is actually metadata is opaque from
the repository perspective.

2.2.3.2 Repository-Managed Content – a form of datastream that

references content that is under the custodianship of the repository.
Repository-Managed Content datastreams can refer to any type of
content (e.g., images, text documents, video, executables, etc.). It
should be noted that in cases where metadata is not available in an
XML format, or when it is desirable to keep metadata stored in
separate files, that metadata can be stored in the repository using a
Repository-Managed Content datastream component. The fact that
the datastream content is actually metadata is opaque from the
repository perspective.

2.2.3.3 Implementer-Defined XML Metadata – a form of datastream

that is stored “inline” as part of the XML-encoded digital object.
Fedora digital objects are stored as XML files, therefore, it is possible
to store XML-encoded metadata directly inside a digital object. These
special datastreams are intrinsically bound to the digital object (i.e.,
they are NOT remote references (i.e., URLs) pointing to content

10 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

outside of the digital object container). By definition Implementer-
Defined XML Metadata datastreams contain well-structured XML
with an XML namespace. A side benefit of this type of datastream
is that metadata can be directly indexed when a digital object XML file
is indexed (i.e., via XML indexing software that may be configured
with Fedora). It should be noted, however, that from an access
perspective, Implementer-Defined XML Metadata datastreams are
treated the same as any other datastream. This means that they can
be disseminated from the digital object (i.e., the metadata gets treated
like other content in the digital object).

2.2.4 Disseminators – A disseminator is the component in a digital object that

is used to associate behaviors (i.e., services) with the object. Each
disseminator names a behavior definition and a behavior
mechanism. The behavior definition is a formal definition of a set of
methods. This can be thought of as similar to an abstract interface. A
behavior mechanism is an executable that implements the behaviors.
Behavior definitions are stored in behavior definition objects,
which are themselves Fedora digital objects with unique PIDs. Behavior
mechanisms are stored in behavior mechanism objects, which are
themselves Fedora digital objects with unique PIDs. A disseminator is
associated with behavior definition object and behavior mechanism
objects by naming the PID for each.

2.2.4.1 Internal Identifier (disseminatorID) – the identifier for a

disseminator within a digital object. This is an internal component
identifier that is unique within the object, and not considered a public
identifier.

2.2.4.2 Disseminator Type Identifier (bdefPID) – The unique identifier

(PID) of the behavior definition object to which the
disseminator subscribes. The PID can serve as a type identifier for
the disseminator, instead of establishing a separate type taxonomy.
Ultimately, there may be a registry of official Fedora behavior
definitions keyed by their PIDs. Also, since a digital object must
not have multiple disseminators of the same disseminator Type
Identifier, the disseminator Type Identifier can be considered
unique within the digital object, and it qualifies as a unique public
identifier for a disseminator. Note that recording the PID of the
behavior definition object as the disseminator Type
Identifier is redundant since it is also recorded in the behavior
definition part of the disseminator (see below).

2.2.4.3 Disseminator Label (dissLabel) – a human readable label that

describes the purpose of the disseminator.

11 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

2.2.4.4 Created Date (dissCreateDT) – the date and time that the
disseminator was created in the repository.

2.2.4.5 Datastream Binding Map (fedoraBindMap) – A disseminator

must store information that provides a mapping of datastreams
(content) to a particular behavior mechanisms that processes those
datastreams in producing disseminations. (In Fedora, behavior
mechanisms typically operate on datastreams in the object,
ultimately producing disseminations by performing some function on
those datastreams.) The Datastream Binding Map conforms to a
set of rules specified by a Datastream Binding Specification found
within a behavior mechanism object (see Section 2.3). Thus, each
disseminator stores a Datastream Binding Map which is a mapping
of datastream identifiers to abstract binding keys that are defined by
a particular behavior mechanism. In essence, this identifies
particular datastreams as the input data to a mechanism. For
example, if a mechanism implements a set of methods (e.g.,
GetThumbNail, GetFullImage) to provide disseminations of images,
then the mechanism that implements these methods only knows how to
deal with specific types of image datastreams (e.g., the mechanism
may only know how to process a MRSid-encoded image
datastream). The behavior mechanism object that stores this
mechanism must publicize the fact that it only processes MRSid and
also specify a binding key that can be used to identify an appropriate
datastream in the object. When a disseminator names a
behavior mechanism, it also records an association between the
mechanism's binding key and the qualifying datastream in the
object. The attributes of a Datastream Binding Map are:

• Internal Identifier (dsBinderMapID) – an unique internal
identifier for the Datastream Binding Map.

• Datastream Binding Set – one or more associations of a
datastream to a data input role that is defined by a Binding
Specification in a behavior mechanism object.

 Datastream Binding Key (dsBindKey) – a label
that identifies a role that a datastream plays in
the context of a particular behavior mechanism.
The mechanism uses this key to identify the
datastream at runtime. There can be many
different binding keys

 Datastream Identifier (datastreamID) – the
internal identifier of a datastream in the digital
object that is to be associated with the particular
binding key

 Datastream Binding Sequence (dsBindSeq) – the
order in which to present or process multiple
datastreams with the same binding key

12 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

2.2.4.6 Behavior Definition – the definition of the behavior
definition which the disseminator represents. A behavior
definition (and its methods) are assigned to the disseminator by
reference to the PID of a particular behavior definition object.
The Fedora Repository System resolves all references at runtime. See
Section 2.3 for more details.

• Internal Identifier (optional) – an internal identifier for the
behavior definition component of a disseminator

• Locator Type (bdefLocType) – default is URN (which is the
format of a PID for a behavior definition object)

• Location (bdefPID) – the PID for a behavior
definition object

2.2.4.7 Behavior Mechanism – the definition of the behavior

mechanism that the disseminator uses as the implementation of
the chosen behavior definition. (We note that there are many
possible mechanisms which can implement the same behavior
definition.) A behavior mechanism (and its method
implementations) are assigned to the disseminator by reference to
the PID of a particular behavior mechanism object. The Fedora
Repository System resolves all references at runtime. See Section 2.3
for more details.

• Internal Identifier (optional) – an internal identifier for the
behavior mechanism component of a disseminator

• Locator Type (bmechLocType) – default is URN (which is
the format of a PID for a behavior mechanism object)

• Location (bMechPID) – the PID for a behavior
mechanism object

2.3 Special Digital Objects

There are three distinct types of Fedora digital objects: (1) data objects, (2) behavior
definition objects, and (3) behavior mechanism objects. As their name implies, data
objects are Fedora digital objects that represent content (i.e., data and metadata) and a
set of associated behaviors or services that can be applied to that content. Data
objects comprise the bulk of a repository. The other two types of objects are also
Fedora digital objects, but play a special role in the architecture.

A behavior definition object is a special type of Fedora digital object that
models a set of abstract behavior definitions. These behavior
definitions consist of a set of methods for transforming or presenting the contents
of a digital object. A behavior mechanism object is a special type of Fedora
digital object that models a set of external behavior implementations for those
behaviors defined by the behavior definition object. The behavior
mechanism object also contains binding relationships between a behavior
mechanism and datastreams in the data object. The abstract behavior
definitions and binding information are expressed using a WSDL definition.

13 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

In the example in Figure 2, a digital object has a Watermarker disseminator that
can dynamically apply a watermark to an image. The disseminator has two
notable attributes: a behavior definition identifier and a behavior
mechanism identifier. These identifiers are actually persistent identifiers to other
Fedora digital objects. These are special digital objects that are surrogates for
external services, for example, a service for obtaining images at different resolutions.
A behavior definition object contains a special datastream whose content is
a WSDL definition of abstract methods for watermarked images (e.g., getImage). A
behavior mechanism object contains a special datastream that is a WSDL
definition describing the run-time bindings to an external service for these methods
(operations). Service bindings can be via HTTP GET/POST or SOAP. See
Appendix B and C for examples of behavior definition and behavior
mechanism objects.

14 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

PID =
uva-lib:1225

Disseminators

Watermarker

bDefPID =
uva-bdef-image-w:101

bMechPID =
uva-bmech-image-w:112

System Metadata

Datastreams

Data Object

PID =
uva-bmech-image-w:112

Disseminators

System Metadata

Datastreams

WSDL
(operations)
(bindings)

Behavior Definition Object
PID =

uva-bdef-image-w:101

Disseminators

System Metadata

Datastreams

WSDL
(method definitions)

(specifications)

Behavior Mechanism Object

Figure 2. Behavior Definition and Behavior Mechanism Objects

2.4 XML Encoding of Digital Objects

The internal structure of each Fedora digital object is represented as XML encoded
text. The XML schema used to encode the Fedora digital object model is an
extension of the Metadata Transmission and Encoding Standard (METS, see
http://www.loc.gov/mets), a Digital Library Federation initiative focused on
developing an XML format for encoding metadata necessary to manage digital library
objects within a repository and to facilitate exchange of such objects among
repositories. The decision to use METS is based on several factors: (1) METS is
expressed using the XML Schema language which enables the expression of data
types and constraints, (2) METS is freely available from the METS website, (3)
METS represents a standard maintained by the Network Development and MARC

15 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Standards Office of the Library of Congress, and (4) the METS schema provides the
majority of the functionality required to encode Fedora digital objects.

There are certain functions required by the Fedora repository to manage digital
objects like the state of an object that currently have no representation in the METS
schema. To support these features we have extended the METS schema by adding
additional attributes on certain elements to accommodate the additional functionality.
The table in Section 7.2 shows the translation of the major Fedora digital object
components to their equivalent METS entities.

See Appendix A for a complete example of a Fedora data object encoded using the
METS schema. Examples of METS encoded behavior definition and
behavior mechanism objects are found in Appendix B and C.

3.0 Repository Architecture

3.1 Repository Architecture Summary

Figure 3. Macro-Level System Diagram

16 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

The Fedora Repository architecture provides access and management services for
digital objects. The Repository architecture is built on Web services technology. A
Web service can be defined as a distributed application that runs over the internet.
Web services are typically configured to use HTTP as a transport protocol for sending
messages between different parts of the distributed application. The use of XML is a
key feature of such applications, serving as a standard for encoding structured
messages that are sent to and from the distributed applications. The Web Services
Description Language (WSDL) is an XML format for describing services as a set of
abstract operations that are realized as a set of endpoints that receive and respond to
structured messages. Each endpoint communicates over a specific network protocol
and uses a specific message format.

A Fedora Repository is exposed as two related Web services, the Fedora Management
service and the Fedora Access service. As depicted in the Macro System Diagram
(Fig. 3), these services are the public entry points into the Repository (i.e., from a
client perspective). The core repository system resides beneath the web service layer
and is the internal implementation of the publicly exposed web services. As seen in
the diagram, the internal repository system also uses Web services technology to
facilitate backend communication with supporting services that are distributed on the
internet, including other Fedora repositories. Clients interact with the Fedora
Repository via the public web services.

3.2 Fedora Management Service

The Fedora Management service defines an open interface for administering the
repository, including creating, modifying, and deleting digital objects, or components
within digital objects. The Management service interacts with the underlying
repository system to read content from and write content to the digital object and
datastream storage areas. The Management service exposes a set of operations
that enable a client to view and manipulate digital objects from an abstract
perspective, meaning that a client does not need to know anything about underlying
storage formats, storage media, or storage management schemes for objects. Also,
the underlying repository system handles the details of storing datastream content
within the repository, as well as mediating connectivity for datastreams that
reference external content.

3.3 Fedora Access Service

The Fedora Access service defines an open interface for accessing digital objects.
The access operations include methods to do reflection on a digital object (i.e., to
discover the kinds of disseminations that are available on the object), and to request
disseminations.

The major function of the Fedora Access service is to fulfill a client's request for
dissemination. To support disseminations, the underlying repository system must
evaluate the behavior associations specified in a digital object, and figure out how to
dispatch a service request to a supporting service with which the digital object
associates. The supporting service may be internal to the repository system, or it may

17 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

be an external web services that the repository must call upon. The underlying
repository system facilitates all external service bindings on behalf of the client,
simply returning a dissemination result via the Access service layer.

3.4 Client Connectivity

Clients interact with Fedora via the publicly exposed Access and Management
services. Note that a client can be a web browser, a web application with embedded
Fedora service requests, or any custom client application that is Fedora-aware. Public
interface definitions for the Fedora Access and Management services are published in
XML using WSDL. Each service definition provides a description of the operations
available for the particular service, including information on how to connect to the
service to invoke operations. The Macro System Diagram (Fig. 3) depicts various
connectivity scenarios for clients interacting with the Fedora Access and Management
services. In brief, these connectivity scenarios are:

• Clients make service requests that are encoded in the HTTP message protocol

format (GET/PUT) and transmitted to Fedora over the HTTP transport protocol
• Clients make service requests that are encoded using the Simple Object Access

Protocol (SOAP) and transmitted to Fedora over the HTTP transport protocol
• Clients make service requests that are encoded using SOAP and transmitted to

Fedora over an alternative transport protocol.

18 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Public APIs for Fedora Services

4.0 Management Service (API-M)

4.1 API-M Definition - the WSDL description of API-M can be obtained at
http://www.fedora.info/documents/Fedora-API-M.wsdl.

4.1.1 Object Management Methods

4.1.1.1 Object Creation - Object creation occurs when either 1) an object is

built up, component by component, via API-M requests, or 2) a new
digital object is created in the repository by accepting an xml
document, encoded in the METS format.

4.1.1.1.1 CreateObject() – creates a new, empty digital object in the

repository. The object's initial state will be N. The repository
will generate and return a new PID for the object resulting
from this request. The PID will have the namespace of the
repository.

Parameters: none

Returns: xsd:string - the PID of the newly created object.

Example:

CreateObject();

4.1.1.1.2 IngestObject(xsd:base64Binary METSXML) – creates a
new digital object in the repository, given the data in the
provided METS document. The object's initial state will be N.
If the METS document does not specify a PID in the OBJID
attribute of the root element, the repository will generate and
return a new PID for the object resulting from this request.
That PID will have the namespace of the repository. If the
METS document specifies a PID, it will be assigned to the
digital object provided that 1) it conforms to the Fedora PID
Syntax, 2) it does not specify the namespace of the repository,
and 3) it does not collide with an existing PID of an object in
the repository.

Parameters:
a. METSXML: the digital object in METS format.

Returns: xsd:string - the PID of the newly created object.

19 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Example:
IngestObject(metsDocument);

4.1.1.2 GetObjectXML(xsd:string PID) – provides the XML portion of the

entire METS-encoded digital object for external use (viewing, editing,
moving to another repository). XML metadata datastreams will be
included inline, content datastreams will not be included, and external
datastreams will be referenced by url.

Parameters:
a. PID: the PID of the object.

Returns: xsd:base64Binary – the digital object in METS format.

Example:

GetObjectXML("uva-edu:123");

4.1.1.3 ExportObject(xsd:string PID) – provides the entire METS-encoded
digital object for external use (viewing, editing, moving to another
repository). XML metadata datastreams will be included inline,
content datastreams will be included inline (base64-encoded), and
external datastreams will be referenced by url.

Parameters:
a. PID: the PID of the object.

Returns: xsd:base64Binary – the digital object in METS format.

Examples:

ExportObject("uva-edu:123");

4.1.1.4 WithdrawObject(xsd:string PID) – withdraws an object, meaning it
is made inactive, and inaccessible to everyone except the repository
administrator.

Parameters:
a. PID: the PID of the object.

Returns: nothing

Examples:

WithdrawObject("uva-edu:123");

4.1.1.5 DeleteObject(xsd:string PID) – deletes an object in the repository,
meaning that the object is marked as deleted, but not physically
removed from the repository.

Parameters:

20 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

a. PID: the PID of the object.

Returns: nothing

Examples:

DeleteObject("uva-edu:123");

4.1.1.6 PurgeObject(xsd:string PID) – physically removes an object from
the repository.

Parameters:
b. PID: the PID of the object.

Returns: nothing

Examples:

PurgeObject("uva-edu:123");

4.1.1.7 ObtainLock(xsd:string PID) – locks an object for writing. Upon
obtaining a lock on an object, a user may execute write methods on the
object. Objects are unlocked via the ReleaseLock method (see below).

Parameters:
a. PID: the PID of the object.

Returns: nothing

Example:

ObtainLock(“uva-edu:123”);

4.1.1.8 ReleaseLock(xsd:string PID, xsd:string logMessage) – unlocks an
object for writing.

Parameters:
a. PID: the PID of the object.
b. logMessage: a log message for the change.

Returns: nothing

Example:

ReleaseLock(“uva-edu:123”);

4.1.1.9 GetLockingUser(xsd:string PID) – tells who has a write lock on an
object.

Parameters:
a. PID: the PID of the object.

21 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Returns: xsd:string – the ID of the user.

Example:

GetLockingUser(“uva-edu:123”);

4.1.1.10 GetObjectState(xsd:string PID) – reports the state of the object,
indicating among other things whether the object is active or
deleted.

Parameters:
b. PID: the PID of the object.

Returns: xsd:string – the code for the object state.

Example: GetObjectState(“uva-edu:123”);

4.1.1.11 ListObjectPIDs(xsd:string state) – provides an enumeration of the
PIDs of the digital objects stored in the repository.

Parameters:
a. state: the state of objects to list. This can be ‘A’, ‘N’, ‘W’,

‘D’, or null. If null, all objects will be listed regardless of state.

Returns: fedora:ArrayOfString – the PIDs

Examples:

ListObjectPIDs(‘A’);

4.1.2 Component Management Methods

These methods are used to create and maintain objects within the repository
sub-system. The repository subsystem exposes this interface and when clients
use it, there is assurance that the repository sub-system is taking full control of
the individual operations that can be performed on an object. This is in
contrast to what happens when the IngestObject method is used, where the
repository accepts an XML-encoded file that represents a digital object. In
this case, the XML editing has taken place outside the context of the
repository. Although the repository can run XML validation on the file before
accepting it, there is a limited amount of control that the repository can take
over how the object is encoded. The Advanced Object Management methods
are used to create objects when there is no offline XML editing available, or it
is not desirable for other reasons. Once an object has been stored in the
repository, the Advanced Object Management methods offer a trusted means
of maintaining the object over time. When clients use these methods to create
or maintain an object, the repository can have more control over the encoding,
versioning, and change tracking. These methods enable the repository to
maintain tight control over objects. Instead of offline clients modifying the

22 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

digital object XML files, the repository makes these changes in response to
client requests.

4.1.2.1 AddDatastreamExternal(xsd:string PID, xsd:string dsLabel,
xsd:string dsLocation) – creates a datastream of the form
Referenced External Content in the digital object. The mime type is
determined by running an HTTP GET request against the provided url,
and taking the value of the “Content-Type” response header.

Parameters:
a. PID: the PID of the object.
b. dsLabel: a human readable label describing the datastream.
c. dsLocation: a valid URL that resolves to content intended to

serve as a datastream in the digital object.

Returns: xsd:string – the ID of the datastream

Examples:

AddDatastreamExternal("uva-edu:123", "imagexyz",
"http://foo.edu/img/xyz.gif");
AddDatastreamExternal("uva-edu:456", "imageabc",
"http://foo.edu/img/abc.gif");

4.1.2.2 AddDatastreamManagedContent(xsd:string PID, xsd:string

dsLabel, xsd:string MIMEType, xsd:base64Binary dsContent) –
Creates a datastream of the form Repository-Managed Content. The
repository copies the contents of the datastream (i.e., the parameter
named dsContent) to a location under the control of the repository.

Parameters:
a. PID: the PID of the object.
b. dsLabel: a human readable label describing the datastream.
c. MIMEType: the mime type of the data (for example,

“image/gif”)
d. dsContent: a byte stream of content intended to be stored in

the repository as a datastream.

Returns: xsd:string – the ID of the datastream

Examples:

AddDatastreamManagedContent("uva-edu:123", “image123”,
“image/gif”, imageBytes);
AddDatastreamManagedContent("uva-edu:456", “image456”,
“image/gif”, imageBytes);

4.1.2.3 AddDatastreamXMLMetadata(xsd:string PID, xsd:string

dsLabel, xsd:string MDType, xsd:base64Binary
dsInlineMetadata) – creates a Implementer-Defined XML Metadata

23 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

datastream of the form Repository-Managed Content in the digital
object from an XML byte array.

Parameters:
a. PID: the Persistent Identifier of the parent digital object in

string format.
b. dsLabel: a human readable label describing the datastream.
c. MDType: a string that indicates the general type of

Implementer-Defined XML Metadata the datastream
represents. In Fedora, valid metadata types conform to the
METS taxonomy of metadata. Thus, valid values for MDType
are: digiprov, rights, technical, source, and descriptive. Refer
to the METS documentation for more description of these
types of metadata.

d. dsInlineMetadata: a bytestream of XML-encoded metadata
intended to serve as a Implementer-Defined XML Metadata
datastream in the digital object. The xml stream must
contain well-formed XML.

Returns: xsd:string – the ID of the datastream

24 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Examples:
AddDatastreamXMLMetadata("uva-edu:123",
“descmeta123”, "descriptive", xmlbytestream);
AddDatastreamXMLMetadata("uva-edu:123",
“rightsmeta123”, "rights" , xmlbytestream);

4.1.2.4 AddDisseminator(xsd:string PID, xsd:string bMechPID,

xsd:string dissLabel, fedora:DatastreamBindingMap dsBindMap)
– adds a disseminator to the object.

Input Parameters:
a. PID: the Persistent Identifier of the parent digital object is

string format.
b. bMechPID: the PID of an existing behavior mechanism

object that represents the implementation of the behaviors
named in the behavior definition to which the
disseminator subscribes. Among other things, the
behavior mechanism object contains service binding
metadata that describes how a set of methods can be invoked
and executed. By associating the PID of a behavior
mechanism object with a disseminator, a client essentially
says that the disseminator represents the implementation of
a set of abstract methods, and that, ultimately, the
disseminator provides disseminations of content via these
methods. The Mechanism Object also contains data binding
metadata that defines a set of data binding keys that can be
used to associate datastreams with the Mechanism. The
data binding metadata also specifies some constraints on the
kind of datastreams that can be used by the mechanism,
such as appropriate MIME types. (See Appendix A for details.)

c. dissLabel: a brief description for the disseminator in string
format. The descriptor should be meaningful to humans and
should connote the purpose of the disseminator.

d. dsBindMap: an encoded structure that represents the
relationships between datastreams and the behavior
mechanism's data input requirements. Specifically the
dsBindMap associates data binding keys (defined by
Mechanism) with datastream identifiers, thus establishing that
particular datastreams play particular roles for the
mechanism at runtime. Each key-to-datastream association
may also be assigned a sequence number, if the Mechanism so
requires. (See Appendix A for details.) A view of the existing
datastreams of the target digital object will be necessary in
order to form the dsBindMap. Clients that implement wizard-
like interfaces for building digital objects likely need access to
metadata that resides in the behavior definition and
behavior mechanism objects to help the client build a
datastream binding map.

25 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Returns: nothing

Example:

AddDisseminator("uva-edu:123", "uva-edu-bmech:123",
"UVA Image Disseminator", bindingMap);

4.1.2.5 ModifyDatastreamExternal(xsd:string PID, xsd:string

datastreamID, xsd:string dsLabel, xsd:string url) – modifies a
datastream of the form Referenced External Content by replacing
currently stored pointer to content with a new pointer to remotely
referenced content supplied by the user.

Parameters:
a. PID: the Persistent Identifier of the parent digital object is

string format.
b. datastreamID: the internal identifier for the datastream to

be modified.
c. dsLabel: a local identifier for the datastream.
d. url: a url pointing to content intended to replace the content

currently stored as a datastream in the digital object.

Returns: nothing

Example:

ModifyDatastreamExternal("uva-edu:123", "DS1" ,
"imagexyz2", "http://foo.edu/img/xyz2.gif");

4.1.2.6 ModifyDatastreamManagedContent(xsd:string PID, xsd:string

datastreamID, xsd:string dsLabel, xsd:string MIMEType,
xsd:base64Binary dsContent) – modifies a datastream of the
form Repository-Managed Content by replacing the content with the
content from the bytestream supplied by the user.– modifies a
datastream of the form Repository-Managed Content by replacing
the content with the content from the bytestream supplied by the user.

Parameters:
a. PID: the Persistent Identifier of the parent digital object is

string format.
b. datastreamID: the internal identifier for the datastream to

be modified.
c. dsLabel: a local identifier for the datastream.
d. MIMEType: the mime type of the content (for example,

“image/gif”)
e. dsContent: a byte stream (Base64) of content intended to

replace the content currently stored as a datastream in the
digital object.

26 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Returns: nothing

Example:

ModifyDatastreamManagedContent("uva-lib:123", "DS1" ,
“imagexyz2”, “image/gif”, somebytestream);

4.1.2.7 ModifyDatastreamXMLMetadata(xsd:string PID, xsd:string
datastreamID, xsd:string dsLabel, xsd:string MDType,
xsd:base64Binary xmlstream) – modifies the contents of a
datastream of the form Implementer-Defined XML Metadata by
replacing the inline content in the digital object with the content from
the bytestream supplied by the user.

Parameters:
a. PID: the Persistent Identifier of the parent digital object is

string format.
b. datastreamID: the internal identifier for the Inline Metdata

datastream to be modified.
c. dsLabel: a local identifier for the datastream.
e. MDType: a string that indicates the general type of

Implementer-Defined XML Metadata the datastream
represents. In Fedora, valid metadata types conform to the
METS taxonomy of metadata. Thus, valid values for MDType
are: digiprov, rights, technical, source, and descriptive. Refer
to the METS documentation for more description of these
types of metadata.

d. xmlstream: a byte stream of XML-encoded metadata
intended to replace an existing Implementer-Defined XML
Metadata datastream in the digital object. The xml stream
must contain well-formed XML.

Returns: nothing

Example:

ModifyDatastreamXMLMetadata("uva-lib:123", "DS1" ,
“metaxyz”, "descriptive", xmlbytestream");

4.1.2.8 ModifyDisseminator(xsd:string PID, xsd:string disseminatorID,

xsd:string bMechPID, xsd:string dissLabel,
fedora:DatastreamBindingMap dsBindMap) –

27 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Parameters:
a. PID: the PID of the object.
b. DisseminatorID: the internal identifier for the

disseminator to be modified. In METS XML, this is the ID
attribute on a <behaviorSec> element.

c. bMechPID: if the intent is to modify the behavior
mechanism for the disseminator, then bMechPID should
be the PID of a new behavior mechanism object, or the PID
of the object that represents a new edition of the currently
associated behavior mechanism object. If no change is
intended to bMechPID, then the value of this parameter should
be the PID of the behavior mechanism object that is
already associated with the disseminator.

d. dissLabel: a brief description for the disseminator in string
format. The descriptor should be meaningful to humans and
should connote the purpose of the disseminator.

e. dsBindMap: a datastream binding map must be in sync
with whatever behavior mechanism is associated with the
disseminator. Thus, if any change is made to bMechPID,
the dsBindMap must also be updated. For example, if a
different behavior mechanism object is being associated
with the disseminator, then the dsBindMap must be
updated to reflect the binding specification requirements of the
new mechanism. A view of the existing datastreams of the
target digital object will be necessary in order to form the
dsBindMap. Clients that implement wizard-like interfaces for
building digital objects likely need access to metadata that
resides in the behavior definition and behavior
mechanism objects to help the client build a datastream
binding map.

Returns: nothing

Examples:

ModifyDisseminator("uva-edu:123", "DISS1", "uva-edu-
bmech:123", "UVA Image Disseminator", xmlfragment);
ModifyDisseminator("uva-edu:123", "DISS1", "uva-edu-
NEWmech:123", "UVA Image Disseminator",
NEWxmlfragment);

4.1.2.9 WithdrawDatastream(xsd:string PID, xsd:string datastreamID) –
withdraws a datastream, meaning it is made inactive, and
inaccessible to everyone except the repository administrator.

Parameters:
a. PID: the PID of the object.

28 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

b. datastreamID: the internal identifier for the datastream to
be withdrawn.

Returns: nothing

Example:

WithdrawDatastream("uva-edu:123", "DS1");

4.1.2.10 DeleteDatastream(xsd:string PID, xsd:string datastreamID) –
used to remove a datastream from a digital object. This request
marks a datastream as deleted without physically removing it from
the digital object. Deleted datastreams can be physically removed
using the PurgeDatastream method.

Parameters:
a. PID: the PID of the object.
b. datastreamID: the internal identifier for the datastream

(Referenced External Content, Repository-Managed Content,
or Implementer-Defined XML Metadata) to be flagged for
deletion.

Returns: nothing

Example:

DeleteDatastream("uva-edu:123", "DS1");

4.1.2.11 PurgeDatastream(xsd:string PID, xsd:string datastreamID) –
used to physically remove a datastream from a digital object.

Parameters:
c. PID: the PID of the object.
d. datastreamID: the internal identifier for the datastream

(Referenced External Content, Repository-Managed Content,
or Implementer-Defined XML Metadata) to be flagged for
deletion.

Returns: nothing

Example:

PurgeDatastream("uva-edu:123", "DS1");

4.1.2.12 WithdrawDisseminator(xsd:string PID, xsd:string
disseminatorID) – withdraws a disseminator, meaning it is made
inactive, and inaccessible to everyone except the repository
administrator.

Parameters:
a. PID: the PID of the object.

29 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

b. disseminatorID: the internal identifier for the
disseminator to be withdrawn. In METS XML, this is the
ID attribute on a <behaviorSec> element.

Returns: nothing

Example:

WithdrawDisseminator("uva-edu:123", "DISS1");

4.1.2.13 DeleteDisseminator(xsd:string PID, xsd:string disseminatorID) –
used to remove a disseminator from a digital object. This request
marks a disseminator as deleted without physically removing it
from the digital object. Deleted disseminators can be physically
removed using the PurgeDisseminator method.

Parameters:
a. PID: the PID of the object.
b. disseminatorID: the internal identifier for the

disseminator to be modified. In METS XML, this is the ID
attribute on a <behaviorSec> element.

Returns: nothing

Example:

DeleteDisseminator("uva-edu:123", "DISS1");

4.1.2.14 PurgeDisseminator(xsd:string PID, xsd:string disseminatorID) –
used to physically remove a disseminator from a digital object.

Parameters:
e. PID: the PID of the object.
f. disseminatorID: the internal identifier for the

disseminator. In METS XML, this is the ID attribute on a
<behaviorSec> element.

Returns: nothing

Example:

PurgeDisseminator("uva-edu:123", "DISS1");

4.1.2.15 GetDatastream(xsd:string PID, xsd:string datastreamID,
xsd:dateTime asOfDateTime) – used to obtain a specific
datastream that exists within a given digital object (i.e.,
Implementer-Defined XML Metadata, Referenced External Content,
and Repository-Managed Content datastreams).

30 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Parameters:
a. PID: the PID of the object.
b. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

Returns: fedora:Datastream – an XML-encoded data structure
that represents a Datastream (where a datastream includes
datastreamID, mimeType, other attributes, and either a URL or a
base64-encoded stream).

Example:

GetDatastream("uva-edu:123", “DS1”, null);

4.1.2.16 GetDatastreams(xsd:string PID, xsd:dateTime asOfDateTime) –
used to obtain all the datastreams that exist within a given digital
object, Implementer-Defined XML Metadata, Referenced External
Content, and Repository-Managed Content datastreams.

Parameters:
a. PID: the PID of the object.
b. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

Returns: fedora:ArrayOfDatastream – an XML-encoded data
structure that represents an array of Datastreams (where a
datastream includes datastreamID, mimeType, other attributes,
and either a URL or a base64-encoded stream).

Example:

GetDatastreams("uva-edu:123", null);

4.1.2.17 GetDisseminator(xsd:string PID, xsd:string disseminatorID,
xsd:dateTime asOfDateTime) – used to obtain a specific
disseminator that exists within a given digital object.

Parameters:
a. PID: the PID of the object.
b. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

Returns: fedora:Disseminator – an XML-encoded data structure
that represents a disseminator (where a disseminator
includes disseminatorID, bdefPID, bMechPID, descriptor, and
dsBindMap).

31 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Example:
GetDisseminator("uva-edu:123", "DISS1", null);

4.1.2.18 GetDisseminators(xsd:string PID, xsd:dateTime asOfDateTime) –

used to obtain all the disseminators that exist within a given digital
object.

Parameters:
a. PID: the PID of the object.
b. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

Returns: fedora:ArrayOfDisseminator – an XML-encoded data
structure that represents an array of disseminators (where a
disseminator includes disseminatorID, bdefPID, bMechPID,
descriptor, and dsBindMap).

Example:

GetDisseminators("uva-edu:123", null);

4.1.2.19 ListDatastreamIDs(xsd:string PID,
xsd:string state xsd:dateTime asOfDateTime) – provides a list of

ids of datastreams in the object.

Parameters:
a. PID: the PID of the object
b. state: the state of the IDs to list. This can be ‘A’, ‘W’, ‘D’,

‘B’, or null. If null, all datastream ids are returned regardless
of state.

c. asOfDateTime: the desired dated view of the object. If null,
this method will run with the most current information
available in the object.

Returns: fedora:ArrayOfString – the datastream IDs.

Example:

ListDatastreamIDs(“uva-edu:123”, null, null)

4.1.2.20 ListDisseminatorIDs(xsd:string PID, xsd:string state,
xsd:dateTime asOfDateTime) – provides a list of ids of
disseminators in the object.

Parameters:
a. PID: the PID of the object
b. state: the state of the IDs to list. This can be ‘A’, ‘W’, ‘D’,

‘B’, or null. If null, all disseminator ids are returned regardless
of state.

32 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

c. asOfDateTime: the desired dated view of the object. If null,
this method will run with the most current information
available in the object.

Returns: fedora:ArrayOfString – the disseminator IDs.

Example:

ListDisseminatorIDs(“uva-edu:123”, null, null)

5.0 Access Service (API-A)

5.1 API-A Definition – the WSDL description for API-A can be found at
http://www.fedora.info/documents/Fedora-API-A.wsdl.

5.1.1 Access Methods

5.1.1.1 GetBehaviorDefinitions(xsd:string PID, xsd:dateTime

asOfDateTime) – used to obtain a list of the behavior
definitions that are supported by the digital object. The PID of a
behavior definition object identifies a behavior
definition type. The GetBehaviorDefinitions method lists the set
of PIDs that represent all behavior definition types found on all
the disseminators of the digital object.

Parameters:
a. PID: the PID of the object.
b. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

Returns: fedora:ArrayOfString – the PIDs of the behavior
definition objects.

Example:

GetBehaviorDefinitions("uva-edu:123", null);

5.1.1.2 GetBehaviorMethods(xsd:string PID, xsd:string bDefPID,
xsd:dateTime asOfDateTime) – used to obtain a list of method
descriptions for a given behavior definition type associated with
the digital object. The PID of a behavior definition object
identifies a particular behavior definition type.

33 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Parameters:
a. PID: the PID of the object.
b. BDefPID: the behavior definition type identifier which

is the PID of a given behavior definition object.
c. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

Returns: wsdl:definitions – pre-bound wsdl that the caller can use
to make a call back to the repository for each method
(GetDissemination requests).

Example:

GetBehaviorMethods("uva-edu:123", "uva-edu-bdef:123",
null);

5.1.1.3 GetBehaviorMethodsAsWSDL(xsd:string PID, xsd:string
bDefPID, xsd:dateTime asOfDateTime) – used to obtain the
WSDL description of methods for a particular behavior
definition object.

Parameters:
a. PID: the PID of the object.
b. BDefPID: the behavior definition type identifier which

is the PID of a given behavior definition object.
c. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

Returns: wsdl:definitions – pre-bound wsdl that the caller can use
to make a call back to the repository for each method
(GetDissemination requests).

Example:

GetBehaviorMethods("uva-edu:123", "uva-edu-bdef:123",
null);

5.1.1.4 GetDissemination(xsd:string PID, xsd:string bDefPID, xsd:string

methodName, fedora:ArrayOfProperty parameters, xsd:dateTime
asOfDateTime) – used to obtain a particular view of content from
the digital object (i.e., a dissemination of content). Essentially, the
GetDissemination request encapsulates a behavior method that is
defined by a particular behavior definition type. The
GetDissemination request hides from the client all implementation
details of how the behavior method is fulfilled (i.e., what behavior
mechanism performs the work, and how the request is invoked upon
the behavior mechanism). A client talks in terms of behavior

34 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

definition types when making a GetDissemination request, thus the
client does not need to know anything about behavior
mechanisms. The repository figures out at run time what behavior
mechanism is associated with the digital object, and how to bind to
that mechanism to fulfill the GetDissemination request.

Parameters:
a. PID: the PID of the object.
b. bDefPID: the behavior definition type identifier which

is the PID of a given behavior definition object.
c. methodName: the name of a method defined in the

behavior definition type represented by bdefPID.
Access to the method definitions of a behavior
definition will be necessary so the client can incorporate a
valid method name in the GetDissemination request. The
client can obtain this information by invoking the
GetBehaviorDefType and GetBehaviorDefMethod requests.

d. parameters: an XML-encoded fragment that represents an
array of properties that should be passed as name-value pairs to
the named method. If the method does not take any
parameters, parameters is null.

e. asOfDateTime: the desired dated view of the object. If null,
this method will run with the most current information
available in the object.

Returns: fedora:MIMETypedStream – the result of the
dissemination request. The actual returned data type is determined
by the behavior mechanism in question.

Example:

GetDissemination("uva-edu:123", "uva-edu-bdef:123",
"GetFoo", null, null);

5.1.1.5 GetObjectMethods(xsd:string PID, xsd:dateTime asOfDateTime) –
used to obtain all method descriptions for all behavior definitions
associated with a a particular digital object. Essentially,
GetObjectMethods provides a way of reflecting on a digital object and
its associated behavior definitions to discover all methods available to
the object.

Parameters:
a. PID: the PID of the object.
b. asOfDateTime: the desired dated view of the object. If null,

this method will run with the most current information
available in the object.

35 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Returns: fedora:ObjectMethodsDef – a data structure containing
all methods and method parameters associated with the specified
digital object.

Example:

GetObjectMethods("uva-edu:123", null);

36 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

System Implementation

6.0 Summary

The Fedora Repository System is implemented as a multi-tiered application. At the top is
the web service layer. At this layer, the Access and Management service definitions (API-
M and API-A) represent the public view of the Fedora Repository System. These two
services definitions are externally expressed as WSDL. The core repository system is
implemented as a set of collaborating subsystems written in Java using Sun's JDK 1.4.
The Access Subsystem is a Java implementation of API-A. The Management Subsystem
is a Java implementation of API-M. Within the core repository system, the Security
Subsystem provides for access control, specifically policy management and enforcement.
At the lowest layer of the repository is the Storage Subsystem, which is responsible for all
read and write operations upon digital objects and datastreams.

In Phase I of the project, the Fedora Access web service is exposed over HTTP via SOAP
bindings that connect to a SOAP-enabled service running on Apache Axis with Tomcat.
Additionally, the GetDissemination operation of API-A is redundantly exposed via an
HTTP GET service binding that connects to a Java servlet running on Apache Tomcat.
The web service service layer interfaces with the core classes of the Access subsystem.
The Management Web service is exposed via SOAP bindings that connect to a SOAP-
enabled service running on Apache Axis with Tomcat. The Web service layer interfaces
with the core classes of the Management subsystem. The development team will assess
the strengths and weaknesses of each connectivity scenario during the testing period, and
make appropriate modifications in Phase II.

Figure 4 depicts the full Fedora system implementation. The core subsystems are below
the web services layer (API-M and API-A). The Phase I implementation includes the
Access, Management, Security, and Storage subsystems. Connectivity to supporting web
services is concentrated in the Storage Subsystem, as depicted the lower right-hand side of
the diagram. Connectivity to remote content (i.e., for External Referenced Content
datastreams) is depicted at the bottom of the Storage subsystem. In Phase I, the
Security subsystem provides basic authentication and enforce a repository-wide access
control policy based on user identity. Fine-grained object-level policy enforcement will
be included in Phase II (e.g., unique policies for disseminations on digital objects). Other
Phase II and III deliverables are marked in the diagram with diagonal fill lines. These
features include: a cache for External Referenced Content datastreams; a cache for
previously executed disseminations; alternative access clients ; alternative connectivity
scenarios to external behavior mechanism services; alternative connectivity scenarios
for External Referenced Content datastreams; and improved security for back-end
connectivity to behavior mechanism services and remote content.

37 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Figure 4. Detailed System Diagram

38 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

7.0 Digital Objects

7.1 XML Encoding using the METS Schema

Fedora digital objects are encoded in XML using the Metadata Transmission and
Encoding Standard (METS). METS was developed under the auspices of the Digital
Library Federation and is maintained by the Network Development and MARC
Standards Office of the Library of Congress. It was originally designed for encoding
metadata necessary to manage digital library objects within a repository and to
facilitate exchange of such objects among repositories. METS is expressed using the
XML Schema language and is freely available from the METS website at
http://www.loc.gov/standards/mets/.

The use of METS is beneficial since Fedora digital objects are encoded using a
community-accepted standard. The METS schema provides all of the functionality
required to encode a digital object container with Fedora components: the PID,
system metadata, datastreams, and disseminators. METS can also be used to
record multiple versions of datastreams and disseminators within a digital
object.

7.2 Mapping to METS XML Schema

Below is a macro-level mapping of the Fedora digital object components to
appropriate METS elements and attributes. In the “METS Encoding" column of the
table, the values in bold italics indicate equivalence to a data definition in the Fedora
model described in Section 2.0. Values that are simply in bold are fixed strings
required by Fedora. In both cases, these conventions indicate that the METS element
or attribute is required from the Fedora perspective. For example, the OBJID
attribute of the root METS element is required and is equivalent to the PID in a
Fedora digital object. Also, the METS root element has a TYPE attribute that must
be populated with the string "FedoraObject." Those METS attributes that do not have
any string value depicted are deemed optional for a Fedora digital object. See the
METS XML Schema (http://www.loc.gov/standards/mets/) for general validity rules
for METS-encoded documents. See the Fedora extension of the METS XML schema
(http://www.cs.cornell.edu/payette/mellon/fedora/mets-fedora.xsd) for elements and
attributes added by the Fedora project. The Fedora team is working with the METS
editorial board to have these extensions included in the official METS schema. Refer
to Appendix A for a sample Fedora digital object encoded in METS.

Table 1. Mapping to METS XML Schema Example

Fedora METS Encoding
Persistent
Identifier
(PID)
+
System
Metadata

<!-- The root METS element contains the PID of the Digital Object, a human-readable -->
<!-- LABEL, and a content model identifier. The METS TYPE attribute is -->
<!-- fixed as 'FedoraObject'-->

<METS:mets ID="" OBJID="PID" LABEL="doLabel" TYPE="FedoraObject"
 PROFILE="contentModelID">

39 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

<!-- Fedora System Metadata is placed in the METS Header and also in a METS amdSec that -->
<!-- wraps a special form of digiprov metadata that conforms to the Fedora Audit Trail schema. -->

<METS:metsHdr ID="" CREATEDATE="createdDT" LASTMODDATE="modDT" RECORDSTATUS="state">

 <METS:agent ID="" ROLE="createAgentRole" TYPE="createAgentType">
 <METS:name> createAgentName </METS:name>
 <METS:note> createAgentNote </METS:note>
 </METS:agent>
 <METS:agent ID="" ROLE="createAgentRole" TYPE="createAgentType">
 <METS:name> createAgentName </METS:name>
 <METS:note> createAgentNote </METS:note>
 </METS:agent>
</METS:metsHdr>

<!-- The Fedora Audit Trail is wrapped in a METS amdSec as a block of METS digiprov metadata. -->

<METS:amdSec ID="FEDORA-AUDITTRAIL">
 <METS:digiprovMD ID="audRecID " CREATED="createDT " STATUS="state ">
 <METS:mdWrap MIMETYPE="text/xml" MDTYPE="OTHER" LABEL="Fedora Audit Trail Record">
 <METS:xmlData>
 <fedoraAudit:record>
 <fedoraAudit:process type=""/>
 <fedoraAudit:action> </fedoraAudit:action>
 <fedoraAudit:responsibility> </fedoraAudit:responsibility>
 <fedoraAudit:date> </fedoraAudit:date>
 <fedoraAudit:justification> </fedoraAudit:justification>
 </fedoraAudit:record>
 </METS:xmlData>
 </METS:mdWrap>
</METS:digiprovMD>

<METS:digiprovMD ID="audRecID " CREATED="createDT " STATUS="state ">
 <METS:mdWrap MIMETYPE="text/xml" MDTYPE="OTHER" LABEL="Fedora Audit Trail Record">
 <METS:xmlData>
 <fedoraAudit:record>
 <fedoraAudit:process type=""/>
 <fedoraAudit:action> </fedoraAudit:action>
 <fedoraAudit:responsibility> </fedoraAudit:responsibility>
 <fedoraAudit:date> </fedoraAudit:date>
 <fedoraAudit:justification> </fedoraAudit:justification>
 </fedoraAudit:record>
 </METS:xmlData>
 </METS:mdWrap>
 </METS:digiprovMD>
</METS:amdSec>

Datastreams

Impl-
Defined
Metadata

+

Referenced
External
Content

+

Repository-
Managed
Content

<!-- Implementor-Defined XML Metadata Datastreams: -->
<!-- A METS amdSec or dmdSec wraps implementor-defined inline metadata -->

<METS:dmdSec ID="dsVersionID " GROUPID="datastreamID" CREATED="dsCreateDT "
 STATUS="state ">
 <METS:mdWrap MIMETYPE="text/xml" MDTYPE="OTHER" LABEL="UVA desc metadata">

 <METS:xmlData>
 <uvadesc:desc>
 <uvadesc:date type="created" certainty="ca." era="bc">13th century</uvadesc:date>
 <uvadesc:identifier scheme="URN"> uva-lib:123</uvadesc:identifier>
 <uvadesc:identifier scheme="URL">http://uva.edu/cgi/imgdef.pl?file=arch/006- 007</uvadesc:identifier>
 <uvadesc:rights type="use">unrestricted></uvadesc:rights>
 <uvadesc:subject scheme="other" othertype="keyword">Bronze Age, Mycenean</uvadesc:subject>
 <uvadesc:subject scheme="other" othertype="keyword">Greek</uvadesc:subject>
 <uvadesc:subject scheme="other" othertype="keyword">Mycenae</uvadesc:subject>

40 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

 <uvadesc:subject scheme="other" othertype="keyword">Greece, Argolis</uvadesc:subject>
 <uvadesc:title type="main">Mycenae</uvadesc:title>
 <uvadesc:type>image</uvadesc:type>
 </uvadesc:desc>
 </METS:xmlData>
 </METS:mdWrap>
</METS:dmdSec>

<METS:amdSec ID="datastreamID " >
 <METS:techMD ID="dsVersionID " CREATED="dsCreateDT " STATUS="state ">

 <METS:mdWrap MIMETYPE="text/xml" MDTYPE="OTHER" LABEL="UVA technical metadata">
 <METS:xmlData>
 <uvatech:tech>
 <uvatech:format>image/jpg</uvatech:format>
 <uvatech:compression>LZW</uvatech:compression>
 <uvatech:bitDepth BITS="8"/>
 <uvatech:colorSpace>RBG</uvatech:colorSpace>
 <uvatech:colorProfile CPLOCAT="FILE" CPFILE="UNKNOWN"/>
 <uvatech:resolution>100</uvatech:resolution>
 </uvatech:tech>
 </METS:xmlData>
 </METS:mdWrap>
 </METS:techMD>
</METS:amdSec>

<!—Referenced External Content and Repository-Managed Content Datastreams: -->

<METS:fileSec>
<METS:fileGrp ID="DATASTREAMS">

 <!-- A METS fileGrp wraps multiple versions of a particular datastream and -->
 <!-- contains a unique datastream identifier for the whole version group. -->

 <METS:fileGrp ID="datastreamID" VERSDATE="dsCreateDT" ADMID="inlinemetaIDs audrecIDs">

 <!-- A METS file element is used to describe a particular version of a datastream. -->
 <!-- All datastreams refer to content via a URL, thus LOCTYPE is fixed as 'URL' -->
 <!-- and the xlink will always be an href to a URL. -->

 <METS:file ID="dsVersionID" MIMETYPE="dsMIME" SEQ="dsSeq" SIZE="dsSize" GROUPID=""
 CREATED="dsCreateDT" CHECKSUM="" OWNERID="dsControlGrp"
 ADMID="inlinemetaIDs audrecIDs " DMDID="inlinemetaIDs" STATUS="state ">
 <METS:Flocat ID="" LOCTYPE="URL" xlink:href="dsLocation" xlink:title="dsLabel"/>
 </METS:file>
 <METS:file ID="dsVersionID" MIMETYPE="dsMIME" SEQ="dsSeq" SIZE="dsSize" GROUPID=""
 CREATED="dsCreateDT" CHECKSUM="" OWNERID="dsControlGrp"
 ADMID="inlinemetaIDs audrecIDs " DMDID="inlinemetaIDs" STATUS="state ">
 <METS:Flocat ID="" LOCTYPE="URL" xlink:href="dsLocation" xlink:title="dsLabel "/>
 </METS:file>
 </METS:fileGrp>

 <!-- Another Datastream with just one version. -->

 <METS:fileGrp ID="datastreamID" VERSDATE="dsCreateDT" ADMID="inlinemetaIDs audrecIDs">
 <METS:file ID="dsVersionID" MIMETYPE="dsMIME" SEQ="dsSeq" SIZE="dsSize" GROUPID=""
 CREATED="dsCreateDT" CHECKSUM="" OWNERID="dsControlGrp"
 ADMID="inlinemetaIDs audrecIDs " DMDID="inlinemetaIDs" STATUS="state ">
 <METS:Flocat ID="" LOCTYPE="URL" xlink:href="dsLocation" xlink:title=" dsLabel "/>
 </METS:file>
 </METS:fileGrp>
</METS:fileGrp>
</METS:fileSec>

41 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Disseminator

<!-- Datastream Binding Maps for Disseminators (specifically for the Behavior Mechanisms). -->

<METS:structMap ID="dsBinderMapID" TYPE="fedora:dsBindingMap" LABEL="" STATUS="state" >
 <METS:div ID="" TYPE="bmechPID" LABEL="">
 <METS:div ID="" TYPE="dsBindKey" ORDER="dsBindSeq" LABEL="" DMDID="" >
 <METS:fptr ID="" FILEID="datastreamID" />
 </METS:div>
 </METS:div>
</METS:structMap>

<METS:structMap ID="dsBinderMapID" TYPE="fedora:dsBindingMap" LABEL="" STATUS="state" >
 <METS:div ID="" TYPE="bmechPID" LABEL="">
 <METS:div ID="" TYPE="dsBindKey" ORDER="dsBindSeq" LABEL="" DMDID="" >
 <METS:fptr ID="" FILEID="datastreamID" />
 </METS:div>
 </METS:div>
</METS:structMap>

<!-- Disseminators -->
<!-- A METS behaviorSec references a behavior definition (interface) and a behavior mechanism. -->
<!-- It also points to METS structMap (datastream binding map) via the STRUCTID attribute. -->

<METS:behaviorSec ID="dissVersionID" GROUPID="dissID" STRUCTID="dsBinderMapID"
 BTYPE="bdefPID" CREATED=" dissCreateDT LABEL="dissLabel"
 ADMID="inlinemetaIDs audrecIDs " STATUS="state">
 <METS:interfaceDef LABEL="" LOCTYPE="URN" xlink:href="bdefPID"/>
 <METS:mechanism LABEL="" LOCTYPE="URN" xlink:href="bmechPID" />
</METS:behaviorSec>

<METS:behaviorSec ID="dissVersionID" GROUPID="dissID" STRUCTID="dsBinderMapID"
 BTYPE="bdefPID" CREATED=" dissCreateDT LABEL="dissLabel"
 ADMID="inlinemetaIDs audrecIDs " STATUS="state">
 <METS:interfaceDef LABEL="" LOCTYPE="URN" xlink:href="bdefPID"/>
 <METS:mechanism LABEL="" LOCTYPE="URN" xlink:href="bmechPID" />
</METS:behaviorSec>

7.3 Digital Object Status Codes (Object State)

A digital object can be marked with different status codes that indicate the state of the
object. Object state is a condition that applies to the entire digital object. In METS,
the digital object state is recorded on the RECORDSTATUS attribute of the root
METS element. The Management subsystem is responsible for setting object state in
response to different operations on a digital object. Valid state values are:

Table 2. Digital Object Status Codes
Object
State

Label Definition

A Active (default) The digital object fully available for
reading and writing, subject to specific
access control policies.

N Incomplete Digital object is in the process of being
created via the API-M component

42 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

methods. The object is not available for
reading.

W Withdrawn The digital object is accessible only to
repository administrators and is
effectively withdrawn from public
readership.

D Marked for Deletion The digital object has been marked for
physical deletion, to be reviewed by
repository administrators before deletion.

7.4 Object Component State (Deletion, Withdrawal, and Inactivation)

Deletion of object components (i.e., datastreams and disseminators) is
controlled by the Management subsystem. Actual physical removal of object
components are allowed only to certain users, (e.g., the repository administrator).
The Management subsystem can assign any of the following states to object
components to provide the greatest flexibility for repository administrators to
establish deletion policies for their institution.

Table 3. Digital Object Component States

Component
State

Label Definition

A Active (default) The object component is fully available to
all users, subject to specific access control
policies.

W Withdrawn The object component is accessible only
to repository administrators and is
effectively withdrawn from public
readership.

D Marked for Deletion The object component has been marked
for physical deletion, to be reviewed by
repository administrators before deletion.

B Broken Link The object component references a link to
external content that was not available via
the network when the link was last
checked.

7.5 Versioning of Digital Objects

The Fedora digital object versioning strategy allows for versioning of components
within a digital object. Both datastreams and disseminators can be versioned.
Each time a new version of a component is created an audit trail record is recorded in
the system metadata section of the object. Below are examples of how a METS file
should be encoded to reflect versioning in each area.

7.5.1 Recording an Audit Trail in Object's System Metadata

43 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Every time a component within a digital object is versioned (i.e., either a
datastream or a disseminator), the system metadata is updated to reflect
an audit trail of changes. Specifically, each component version is associated
with a block of administrative metadata that explains the nature of the change.
The Fedora Audit Trail metadata schema (fedoraAudit.xsd) is used to capture
the who/what/when/why of version updates. Thus, every time a version of a
datastream or disseminator is added to the object, an audit record is also
added. In METS, the audit records are encoded within a <METS:amdSec>
element, specifically in a METS:digiprovMD element within the amdSec.
Note that for datastream versions, the ADMID attribute of the METS:file
points to the relevant <METS:amdSec> to associate the audit record with the
datastream version. For disseminators, the ADMID attribute on the
<METS:behaviorSec> does the equivalent association. See the METS
example in 7.5.2.1.

7.5.2 Versioning of Datastreams

A datastream can have multiple versions. Each version must have a
version identifier and a date of creation. datastreams cannot be modified,
they must be versioned. Thus, any change to a datastream requires a new
version of the datastream to be created. Every new version of a
datastream must have an audit record in the Audit Trail section of the
object.

7.5.2.1 Using METS to Encode Datastream Versioning – the METS

<fileSec> is used to record datastreams. The METS <fileGrp> is
used to group versions of the same datastream. Each datastream
version is represented by a METS <file> element. The ID attribute of
the inner <fileGrp> element is used to record the datastreamID and the
ID attribute of the <file> elements is used as datastream version
numbers.

 <METS:fileGrp ID="DS1" VERSDATE="2001-08-31T06:32:00" STATUS="A">

 <!--This is the most current version of the medium sized image -->

 <METS:file ID="DS1.1" SEQ="2" CREATED="2002-05-22T06:32:00"
 MIMETYPE="image/jgp" OWNERID="E" ADMID="TECH2 AUDREC2"
 STATUS="A">

 <METS:FLocat LOCTYPE="URL"

 xlink:href="http://dl.lib.virginia.edu/data/image/saskia/006-007b2.jpg"
 xlink:title="Saskia medium jpg image"/>

 </METS:file>

 <!--This is an OLDER version of the medium sized image -->
 <METS:file ID="DS1.0" SEQ="1" CREATED="2001-08-31T06:32:00"
 MIMETYPE="image/jgp" OWNERID="E" ADMID="TECH2 AUDREC1"
 STATUS="A">

 <METS:FLocat LOCTYPE="URL"
 xlink:href="http://dl.lib.virginia.edu/data/image/saskia/006-007b1.jpg"
 xlink:title="Saskia medium jpg image"/>
 </METS:file>
 </METS:fileGrp>

44 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

7.5.2.2 Encoding Conventions for version control using METS –

7.5.2.2.1 Datastream version wrapper as <METS:fileGrp>: one for

each datastream. Used to group multiple versions of the
same datastream. The required attributes for version control
are:

a. ID: This is the official DatastreamID, common to all
versions of the datastream in the METS:fileGrp.

b. VERSDATE: To support dateTime-stamped access
requests, the VERSDATE attribute should reflect the
dateTime that the <fileGrp> was originally created.
This is the same as the CREATED attribute on the
original <file> within the <fileGrp>, which is the first
version of a datastream. Using VERSDATE as the
created date for the <fileGrp> is consistent with
METS intended use of this attribute. It may be
tempting to update the VERSDATE when a
datastream is versioned, thus having it reflect the
CREATED date of the most recent <file> within it.
This may present a problem in dateTime-stamped
access requests because the <fileGrp> node would not
reflect that there may be a <file> within that has a
CREATED date earlier than that of the most recent
<file>. For example, if we want a parsing program to
quickly evaluate whether a <fileGrp> contains a
<file> that is within a requested date, we cannot have
VERSDATE be the latest modification date. This
would require us to always evaluate all the <file>
members within <fileGrp>. The VERSDATE on the
<fileGrp> would be useless.

7.5.2.2.2 Datastream as <METS:file>: used to encode a particular

version of a datastream. There must be at least one <file>
within a <fileGrp>. The required attributes for version control
are:

a. ID: this is the datastream version identifier
(dsVersionID), not the official datastreamID (which is
found on the <fileGrp> that serves as the datastream
version group wrapper).

b. CREATED: the dateTime that a version of a
datastream was created.

7.5.2.2.3 Algorithm to get Datastreams as of specified dateTime:

a. Program looks at ID attribute on <fileGrp> elements to
locate the required datastream (search on
datastreamID)

45 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

b. Optionally, the program can evaluate the VERSDATE
attribute on the <fileGrp> to get a quick answer as to
whether the datastream version group qualifies as
within the dateTime boundary. VERSDATE reflects
the oldest datastream date.

c. Program parses within <fileGrp> for <file> elements
with requestedDateTime >= CREATED. This could
yield more than one <file>.

d. If we have multiple qualifying <file> nodes, then we
calculate which one has the dateTime closest to the
requested dateTime.

7.5.3 Versioning of Disseminators

Since a disseminator points to a behavior definition object and a
behavior mechanism object, the disseminator is subject to the version
changes that have taken place in these objects. Refer to section 9.5.4 for a
description of how behavior definition and behavior mechanism
objects affect disseminators and disseminations.

There is one case where it may be appropriate to version a disseminator
component itself. This is the case where the disseminator is updated to
use an alternative behavior mechanism, but still subscribes to the same
behavior definition. Such an event may occur when a better
mechanism has been developed (e.g., faster, better), but the same overall
functionality is maintained from the perspective of the object's
disseminator. The METS example below demonstrates how a
disseminator (METS behaviorSec) can be versioned for mechanism
replacement. Notice that the METS:mechanism points to a entirely different
behavior mechanism object in the new version.

<!--This is the most current version of the Std. Image Disseminator -->
<!--The mechanism has been replaced, but the behavior def is the same. -->
<METS:behaviorSec ID="DISS1.1" GROUPID="DISS1" STRUCTID="S1.1"
 BTYPE="uva-bdef:stdImage" CREATED=" 2002-05-20T08:32:00
 LABEL="UVA Std Image Disseminator" STATUS="A">
 <METS:interfaceDef LABEL="UVA Standard Image Behavior Definition"

 LOCTYPE="URN" xlink:href=" uva-bdef:stdImage "/>
 <METS:mechanism LABEL="A NEW AND IMPROVED Image Mechanism"

 LOCTYPE="URN" xlink:href="uva-bmech:BETTER-imageMech"/>
</METS:behaviorSec>

<!--This is the older version of the Std. Image Disseminator -->
<METS:behaviorSec ID="DISS1.1" GROUPID="DISS1" STRUCTID="S1.1"
 BTYPE="uva-bdef:stdImage" CREATED=" 2001-08-31T06:32:00
 LABEL="UVA Std Image Disseminator" STATUS="A">
 <METS:interfaceDef LABEL="UVA Standard Image Behavior Definition"

 LOCTYPE ="URN" xlink:href ="uva-bdef:stdImage"/>
 <METS:mechanism LABEL="Image Mechanism"

 LOCTYPE ="URN" xlink:href ="uva-bmech:imageMech"/>
</METS:behaviorSec>

7.5.4 Versioning of Behavior Definition and Mechanism Objects

46 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

A behavior definition object may have multiple versions of a
behavior definition. In the behavior definition object, a distinct
date/time stamped block of WSDL represents each version of an abstract
service definition. Fedora best practice dictates that new versions are created
when new methods are added to behavior definitions; however, for
backwards compatibility reasons, old methods should never be deleted from
any version of a behavior definition.

A behavior mechanism object may contain multiple versions of
behavior mechanism implementations. Different versions are recorded as
distinct, date/time-stamped blocks of WSDL service bindings for a given
abstract service definition. A new version of a service implementation may be
recorded when changes are made to underlying executables for the behavior
mechanism service. Another case is when a behavior mechanism service
is upgraded to conform to a new version of a behavior definition.
Fedora best practice is that any change to an executable that affects the look
and feel of content should result in a new version of that executable being
maintained, and new service bindings should be recorded in the behavior
mechanism object.

Table 4. Versioning of Behavior Definition and Mechanism Objects

 Best Practice
Versioning within
Behavior Definition
Objects

Record a new block of WSDL with a CREATED
date/time in the behavior definition object
whenever new methods are added to a behavior
definition.

Deletion and modification of methods not allowed.

Versioning within
Behavior
Mechanism
Objects

Record a new block of WSDL with a CREATED
date/time in the behavior mechanism object
whenever significant changes have been made to the
behavior service executables, and the former service
executables are still available.

Record a new block of WSDL with a CREATED
date/time whenever a behavior service has been
upgraded to implement a new version of a behavior
definition.

7.5.4.1 Implications for Disseminations – The Fedora Access subsystem

processes a dissemination request by first looking at the method
implementation information in the behavior mechanism object that
is associated with a digital object's disseminator. A dissemination
request may have a date/time stamp on it; the default is the current
date. When the Access subsystem processes the dissemination request
it: (1) determines whether there are multiple service implementations

47 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

for the method specified in the dissemination request. It does this by
looking for multiple WSDL blocks in the behavior mechanism
object, (2) if there is just one version of the service, it uses that service
binding information. Otherwise, it chooses the service implementation
(WSDL block) whose CREATED date is closest to the date/time
stamp specified in the dissemination request, and (3) runs a
dissemination by invoking the method using behavior service binding
information.

7.5.4.2 Implications for Method Reflection on Digital Objects – When the

Access subsystem processes a GetBehaviorMethods request (see
section 5.0) for a digital object, it must look at the disseminator
and report back to the client what methods can be run via
dissemination requests. A client cannot take advantage of a method
unless the behavior mechanism object associated with the
disseminator specifies an implementation for that method. In
theory, a behavior definition may specify some abstract
methods that a particular behavior mechanism object does not
records service bindings for. The Access subsystem reports back to
clients only those methods that are actually available via a
disseminator's behavior mechanism object. Thus, a
disseminator subscribes to a behavior definition, but it can
only run the methods actually implemented by the mechanism that it
uses.

A client may invoke the GetBehaviorMethods request with a particular
date/time stamp on it. In this case, the Access subsystem reports the
set of methods that were implemented in a behavior mechanism
object as of that date/time. Thus, the Access subsystem determines
whether there are multiple versions of a service implementation in a
behavior mechanism object (i.e., as multiple blocks of WSDL). It
chooses the appropriate version based on the CREATED date of the
WSDL block.

It should be noted that since the GetBehaviorMethods request
contextualizes the view of a behavior definition based on what
is implemented in the mechanism, a client who wants to view the
official behavior definition must make a direct inquiry on a
behavior definition object.

8.0 Management Subsystem

The Management subsystem provides a Java implementation of the API-M service
definition. This subsystem is the workhorse for fulfilling client requests that originate at
the web service layer. All requests for creating or manipulating a digital object are

48 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

processed here. The Management subsystem consists of four modules: Object
Management, Component Management, PID Generation, and Object Validation.

In fulfilling API-M requests, the Management subsystem interacts with the Storage
subsystem, which writes and reads objects and components to and from persistent storage.
It is the job of the Management subsystem to instantiate a Digital Object Manager to
interact with the Storage subsystem. The Digital Object Manager enables the
Management subsystem to obtain an appropriate reader or writer for a digital object. An
Object Reader or Object Writer enables the Management subsystem to work on a digital
object in an abstract manner, free from details of how a digital object is actually stored on
disk or on the network.

As the Management subsystem mediates between the web service layer and the Storage
subsystem, it also ensures that all operations on a digital object maintain object integrity.
It interacts with the Object Validation module to make sure that operations do not cause
the object to violate the METS XML Schema or Fedora-specific rules. It is also
responsible for Object State. Specifically, the Management subsystem ensures that the
value of an object's state attribute (see section 7.3) is properly set for specific object-level
operations.

To ensure proper access control, the Management subsystem interacts with the Security
subsystem, which is in charge of enforcing policies that pertain to the use of API-M
methods.

8.1 API-M Implementation

8.1.1 Object Management Module – The Object Management module focuses on
the API-M operations that pertain to a digital object as a whole entity. These
operations include adding, removing, and obtaining a copy of a complete
digital object. Individual components of a digital object are not manipulated
via the Object Management module. From the perspective of the Object
Management module, the digital object is a stream of bytes with a PID. The
Management subsystem translates object-level API-M requests into method
calls upon an appropriate Object Reader or Writer that deals with the object at
the storage layer.

8.1.1.1 IngestObject – fulfills a client request to import a complete digital

object into the repository. In Phase 1, it only imports objects that are
encoded in the METS format. Calls the PID generation module to
obtain a PID for the object. Calls the Object Validation module to
ensure that imported object meets all METS and Fedora integrity
standards. Rejects objects that do not pass validation testing, and send
report back to client. If object is valid, uses an Object Writer to set
Object State to "A" (Active), and to put the object into persistent
storage.

8.1.1.2 CreateObject – fulfills client request to create a new digital object.

Calls the PID generation module to obtain a PID for the object.

49 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Creates an empty digital object containing only a PID and initial
system metadata. Uses an Object Writer to set Object State to "N"
(Incomplete) since the object is not ready for circulation until it has
been built up with content and behaviors via the component-level
methods of API-M. Uses Object Writer to put the object to persistent
storage. Note: clients must use the ObtainLock method before using
the component management methods for adding datastreams and
disseminators. Clients must ultimately issue the ReleaseLock
method to commit all component additions, at which time the Object
State gets set to "A" (Active).

8.1.1.3 GetObjectXML – fulfills client request to obtain a copy of a

particular digital object in METS XML-encoded format. This method
does not resolve datastream references within the object.
Referenced External Content datastreams are returned as pointers
to remote content. Repository-Managed Content datastreams are
returned as local identifiers (i.e., DatastreamIDs). Implementor-
Defined XML Metadata datastreams are returned as inline XML-
encoded content. Uses Object Reader to obtain the object as a stream
of bytes.

8.1.1.4 ExportObject – fulfills client request to obtain a complete copy of a

particular digital object suitable for transporting to another repository
in METS XML format. Referenced External Content datastreams
are returned as pointers to remote content. Repository-Managed
Content datastreams are returned as inline base64-encoded byte
streams. Implementor-Defined XML Metadata datastreams are
returned as inline XML-encoded content. Uses Object Reader to
obtain the object as a stream of bytes.

8.1.1.5 DeleteObject – fulfills client request to delete an object from the

repository without physically removing the object from the repository .
Uses an Object Writer to set the Object State to "D" (Marked for
Deletion). This makes the object unavailable, except to repository
administrators. Objects can be physically removed from the repository
using the PurgeObject operation.

8.1.1.6 PurgeObject – fulfills client request to purge an object from the

repository which results in the object being physically removed.
Objects must be in the "D" state (marked for deletion) before the can
by physically removed.

8.1.1.7 WithdrawObject – fulfills client request to withdraw an object from

circulation. Uses an Object Writer to set the Object State to "W"
(Withdrawn). This makes the object unavailable, except to repository
administrators. Objects that are withdrawn are never physically
removed from the repository.

50 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

8.1.1.8 ObtainLock – gives the calling client a write lock on a particular

digital object. Keeps track of the user id and session associated with
the locked object. Ensures that a working copy of the locked digital
object is instantiated via an Object Writer. Ensures that the
authoritative copy of the digital object is recorded as locked by the
repository. When an object is locked the authoritative copy of the
object can be read by others clients while the working copy is being
manipulated.

8.1.1.9 ReleaseLock – releases a write lock that the calling client has on a

particular digital object. The client will specify whether changes
should be committed or abandoned. If changes are to be committed,
ReleaseLock initiates a process to commit changes made to the object.
It calls the Object Validation module to ensure that object meets all
METS and Fedora integrity standards. If the object is valid, it initiates
object replication routines to propagate changes through the
repository. If the client requests that changes be abandoned, the lock
is released without committing changes.

8.1.1.10 GetLockingUser – fulfills client request to obtain the user holding a

lock for a particular digital object.

8.1.1.11 ListObjectPIDs – provides the calling client with a list of PIDs for
objects stored in the repository. Returns only PIDs of objects whose
Object State matches the value supplied by the State parameter. If
invoked with no State parameter (i.e., State value is null), the method
returns only PIDs for objects with an Object Status of “A” (Active).

8.1.2 Component Management Module – The Component Management module

focuses on the API-M operations that pertain to a digital object components,
specifically datastreams and disseminators. These operations include
adding, removing, and modifying these components. The Management
subsystem translates object-level API-M requests into method calls upon an
appropriate Object Reader or Writer that deals with the digital object and its
components at the storage layer.

8.1.2.1 AddDatastreamExternal – fulfills a client request to create a new

datastream of the External Referenced Content variety. Uses an
Object Writer to record the datastream information inside the digital
object, particularly the URL of the referenced content. The Object
Writer assigns a datastream identifier, a version identifier, and a
created date/time. It also sets the datastream control group to
"External" meaning the datastream content is not under the direct
custodianship of the repository. The MIME type is obtained by doing
an HTTP GET on the URL. Finally, the Object Writer sets the
Component State to "A" (Active) and insert an audit trail record in the
digital object describing the transaction.

51 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

8.1.2.2 AddDatastreamManagedContent – fulfills a client request to create

a new datastream of the Repository-Managed Content variety. Uses
an Object Writer to record the datastream information inside the
digital object. The Object Writer assigns a datastream identifier, a
version identifier, and a created date/time. The API-M request
contains a stream of byes, and the Object Writer puts this content in a
repository-specific storage location. It sets the datastream control
group to "Internal" meaning the datastream content is under the
direct custodianship of the repository. Finally, the Object Writer sets
the Component State to "A" (Active) and insert an audit trail record in
the digital object describing the transaction.

8.1.2.3 AddDatastreamXMLMetadata – fulfills a client request to create a

new datastream of the Implementer-Defined XML Metadata
variety. Uses an Object Writer to record the datastream information
inside the digital object. The Object Writer assigns a datastream
identifier, a version identifier, and a created date/time. The API-M
request has a metadata type indicator (MDType) and a block of XML
metadata as a stream of bytes. The Object Writer verifies that the
incoming bytes are valid XML with a namespace, and if so, it stores
the incoming XML inside the digital object (i.e., as inline XML within
the METS XML). The Object Writer sets the datastream MIME
type to "text/xml." It also sets the datastream control group to
"Internal" meaning the datastream content is under the direct
custodianship of the repository. Finally, the Object Writer sets the
Component State to "A" (Active) and insert an audit trail record in the
digital object describing the transaction.

8.1.2.4 ModifyDatastreamExternal – fulfills a client request to modify an

existing datastream of the External Referenced Content variety.
Uses an Object Writer to record updated datastream information
inside the digital object, particularly the URL of the referenced
content. All modification requests result in the creation of a new
version of the datastream. The Object Writer uses the existing
datastream identifier, but assign a new version identifier and an
updated date/time for the version. It also sets the datastream control
group of the version to "External" meaning the content is not under the
direct custodianship of the repository. The MIME type is obtained by
doing an HTTP GET on the URL. Finally, the Object Writer sets the
new version's Component State to "A" (Active) and insert an audit trail
record in the digital object describing the transaction.

8.1.2.5 ModifyDatastreamManagedContent – fulfills a client request to

modify an existing datastream of the Repository-Managed Content
variety. All modification requests result in the creation of a new
version of the datastream. Uses an Object Writer and follows the
procedure described above in AddDatastreamManagedContent for

52 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

interpreting the API-M request and storing the new version of
datastream (attributes and content) in the appropriate manner. The
Object Writer uses the existing datastream identifier, but assigns a
version identifier and updated date/time for the version. Finally, the
Object Writer sets the Component State to "A" (Active) and insert an
audit trail record in the digital object describing the transaction.

8.1.2.6 ModifyDatastreamXMLMetadata – fulfills a client request to

modify an existing datastream of the Implementer-Defined XML
Metadata variety. All modification requests result in the creation of a
new version of the datastream. Uses an Object Writer and follows
the procedure described above in AddDatastreamXMLMetadata for
interpreting the API-M request and storing the new version of the
datastream (attributes and XML metadata) inside the digital object.
The Object Writer uses the existing datastream identifier, but
assigns a version identifier and updated date/time for the version.
Finally, the Object Writer sets the Component State to "A" (Active)
and insert an audit trail record in the digital object describing the
transaction.

8.1.2.7 AddDisseminator – fulfills a client request to create a new

disseminator. Calls upon the Object Validation module to pre-
validate the referential integrity of the disseminator’s parts.
Specifically, ensures that the behavior definition and
behavior mechanism objects specified on the API-M request are
compatible. Also, ensures that the datastream binding map
provided in the API-M request meets the requirements implied in the
request (see section 4.1.2.4 for details). AddDisseminator uses an
Object Writer to record the disseminator’s information inside the
digital object, particularly the PIDs of the behavior definition
and behavior mechanism objects, plus the datastream binding
map. The Object Writer assigns a disseminator’s identifier, a
version identifier, and a created date/time. Finally, the Object Writer
sets the Component State to "A" (Active) and insert an audit trail
record in the digital object describing the transaction.

8.1.2.8 ModifyDisseminator – fulfills a client request to modify a new

disseminator. All modification requests result in the creation of a
new version of the disseminator. Calls upon the Object Validation
module to pre-validate the referential integrity of the updated
disseminator’s parts, as described above in the description of
AddDisseminator. Uses an Object Writer to record the updated
disseminator’s information inside the digital object, particularly
the PIDs of the behavior definition and behavior
mechanism Objects, plus the datastream binding map. The Object
Writer uses the existing disseminator’s identifier, but assigns a
new version identifier, and an updated date/time for the version.

53 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Finally, the Object Writer sets the Component State to "A" (Active)
and inserts an audit trail record in the digital object describing the
transaction.

8.1.2.9 DeleteDatastream - fulfills a client request to remove a

datastream from a digital object. Uses an Object Writer to set the
Component State to "C" (Marked for Deletion). All versions of the
datastream are marked for deletion (i.e., there is no method for
deleting a particular version). Object Writer inserts an audit trail
record in the digital object describing the transaction.

8.1.2.10 WithdrawDatastream – fulfills a client request to withdraw a

datastream from service. Uses an Object Writer to set the Object
Component State to "W" (Withdrawn). This makes the datastream
unavailable, except to repository administrators. All versions of the
datastream are marked as withdrawn (i.e., there is no method for
deleting a particular version). Object Writer will insert an audit trail
record in the digital object describing the transaction. Datastreams
that are withdrawn are never physically removed from the repository.

8.1.2.11 DeleteDisseminator - fulfills a client request to remove a

disseminator from a digital object. Uses an Object Writer to set
the Component State to "C" (Marked for Deletion). All versions of the
disseminator are marked for deletion (i.e., there is no method for
deleting a particular version). Object Writer inserts an audit trail
record in the digital object describing the transaction. Note that
DeleteDisseminator does not affect the behavior definition and
behavior mechanism objects to which the disseminator
referred. These are independent objects in their own right.

8.1.2.12 WithdrawDisseminator – fulfills a client request to withdraw a

disseminator from service. Uses an Object Writer to set the Object
Component State to "W" (Withdrawn). All versions of the
disseminator are marked as withdrawn (i.e., there is no method for
deleting a particular version). This makes the disseminator
unavailable, except to repository administrators. Object Writer will
insert an audit trail record in the digital object describing the
transaction. Note that WithdrawDisseminator does not affect the
behavior definition and behavior mechanism objects to
which the disseminator referred. These are independent objects in
their own right. Disseminators that are withdrawn are never
physically removed from the repository.

8.1.2.13 GetDatastreams - fulfills a client request to obtain all of the

datastreams within a digital object. Uses an Object Reader to
obtain attributes and content for each datastream. Ultimately, the
client receives an array of datastreams encoded in XML (as defined
in the API-M WSDL). Default is to return just current version of each

54 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

datastream. If request has date/time stamp, returns version of each
datastream closest to requested timeframe (see algorithm is section
7.5.2.2.3). Does NOT return datastreams with Component State of
"W" (Withdrawn) or "D" (Marked for Deletion).

8.1.2.14 ListDatastreamIDs – provides the calling client with a list of

identifiers for datastreams in the digital object. Returns only
identifiers of datastreams that are accessible by clients. The
method returns only identifiers of datastreams whose Object
Component State matches the value supplied by the State parameter. If
invoked with no State parameter (i.e., State value is null), the method
returns only identifiers for datastreams with an Object Component
Status of "A" (Active).

8.1.2.15 GetDatastream - fulfills a client request to obtain a specific

datastream within a digital object. The API-M request contains a
datastream identifier. Follows procedure for GetDatastreams, but
for a single datastream.

8.1.2.16 GetDisseminators - fulfills a client request to obtain all of the

disseminators within a digital object. Uses an Object Reader to
obtain attributes for each disseminator. Ultimately, the client
receives an array of disseminators encoded in XML (as defined in
the API-M WSDL). Default is to return just current version of each
disseminator. If request has date/time stamp, returns version of
each disseminator closest to requested timeframe. Does NOT
return identifiers for disseminators with Component State of "W"
(Withdrawn) or "D" (Marked for Deletion).

8.1.2.17 ListDisseminatorIDs – provides the calling client with a list of

identifiers for disseminators in the digital object. Returns only
identifiers of disseminators that are accessible by clients. The
method returns only identifiers of disseminators whose Object
Component State matches the value supplied by the State parameter. If
invoked with no State parameter (i.e., State value is null), the method
returns only identifiers for disseminators with an Object
Component Status of "A" (Active).

8.1.2.18 GetDisseminator - fulfills a client request to obtain a specific

disseminator within a digital object. The API-M request specifies
a disseminator identifier. Follows procedure for
GetDisseminators, but for a single disseminator.

8.2 Internal PID Generation Module

The Fedora PID Generation module runs as part of a Fedora repository within the
Management subsystem. As mentioned earlier, a PID is a persistent identifier for a
digital object. PIDs must be unique within a given repository. However, the

55 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

possibility of distributed repositories requires generating PIDs that are unique across
all repositories. Therefore, each repository is configured with a unique identifier
which serves as the namespace for PIDs generated within that repository.

PIDs are generated at the time that digital objects are added to the repository. The
PID Generator is called via methods of API-M (i.e., IngestObject, CreateObject).

8.2.1 PID Generation Interface Definition

8.2.1.1 GeneratePID(string namespaceID) – creates a new PID with the

specified namespace as a prefix.

Input Parameters:
a. namespaceID: The namespace is the repository identifier
that is configured for the Fedora repository. Each Fedora
repository has a unique identifier.

Return Value: a PID in string format

Client pre-requisites:
(1) the client is a calling program in the Fedora Management
subsystem. This client program must have access to the repository
identifier that is configured for the repository

Example:

GeneratePID("uva-lib");

8.2.1.2 GetLastPID() – returns the last PID generated by reading the last
entry in the PID log file.

Input Parameters: none

Return Value: a PID in string format

Client pre-requisites:
(1) none

Example: GetLastPID();

8.3 PID Generator Implementation

8.3.1 PID Syntax

PIDs are based on the URN Syntax as described in RFC 2141 (see
http://www.rfc.net/rfc2141.html), however, we do not prepend the PID with
the “urn” prefix. A PID string should be opaque, meaning it should not carry
any system-specific meaning within them. Keeping PIDs opaque keeps them
from being bound to a specific machine, repository, or location. There are

56 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

several possible methods for generating unique strings. The PID Generator
uses a simple counter mechanism that provides low risk of duplicate PIDs. A
PID consists of two parts, a namespace and an object identifier string,
separated by a delimiter character:

(1) Namespace prefix: a string that identifies the namespace of a specific
repository or a group of repositories. The namespace is a logical
construct. From a global uniqueness perspective, the participants in
Fedora must avoid overlap of their namespace identifiers. Allowed
characters include alpha characters a-z and the dash(-) character, but no
other special characters (e.g., uva-lib, uva-cs, cornell-cs, uva, oxford).

(2) Delimeter – a single character delimiter consisting of a colon (":").

(3) Object ID String: a sequential number generated by an incremental
counter. This string uniquely identifies an object within a namespace.
Allowed characters include digits 0-9 with unbounded length (e.g., 1, 12,
12345).

Examples of valid PIDs:

uva-lib:1234567890
uva-lib:123
uva-lib:12345
uva-cs:123
cornell.cs:123

8.3.2 Method Implementation – The methods of the PID Generator Interface are
implemented as follows:

8.3.2.1 GeneratePID – The PID is generated in accordance with the syntax

specified above. Each time this request is issued, an entry to a PID log
file is made indicating the PID that was generated, and a date/time it
was generated. The log file also serves as the official counter file for
the PID Generator. Thus, each time a new GeneratePID request is
processed, the last PID is obtained from the log file (this can be done
via the GetLastPID method). The Object ID string is parsed out of the
last PID and incremented to create the next PID. The log file must be
initialized to bootstrap the first GeneratePID request.

8.3.2.2 GetLastPID – This method is typically called by the GeneratePID

method to obtain the last PID, (which is then incremented to create the
next PID). The GetLastPID method can also be used for utility or
debugging purposes.

8.4 Object Validation Module

57 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

8.4.1 METS XML Schema Validation – Both the Object Management and
Component management modules call upon the Object Validation module to
ensure that digital object validate against the METS XML schema. This
validation module contains a pluggable XML schema validating parser (e.g.,
Xerces).

8.4.2 Fedora Integrity Rules – Beyond the METS schema validation, there are a

set of Fedora-specific integrity rules for digital objects. Many elements and
attributes in the METS schema are optional. Furthermore, there are some
integrity rules that are not easily expressed using XML schema language.
Thus, the Object Validation module implements a secondary integrity check.
This integrity check is implemented using both java code and the Schematron.
Schematron provides a means of declaring a set of rules in an XML format,
and uses an XSLT-based approach for validating an XML document against
the rules. The table below outlines some of the Fedora-specific integrity rules
for digital objects:

Table 5. Selected Fedora Integrity Rules

Fedora Integrity Rule Additional METS restrictions
1. Every digital object must have a
PID, a created date/time, and an
Object State indicator

OBJID attribute on <mets> required

CREATEDATE on <metsHdr>
required

RECORDSTATUS attribute on
<metsHdr> required.

2. Every digital object must be
typed as a Fedora digital object

TYPE attribute on <mets>must have
fixed value of "FedoraObject"

3. Every datastream must have a
datastream identifier

ID attribute on <fileGrp> required

GROUPID on metadata section
(mdSecType) required

4. Every datastream version
must have a version identifier

 ID attribute on <file> required

 ID attribute on metadata section
(mdSecType) required

5. Every datastream version
must point to a Fedora audit trail
record

ADMID attribute on <file> must
reference a metadata section within
an <amdSec> whose ID attribute id
"FEDORA-AUDITTRAIL"

6. Every disseminator must
have a disseminator identifier

GROUPID attribute on
<behaviorSec> required

7. Every disseminator version
must have a version identifier

ID attribute on <behaviorSec>
required

8. Every disseminator version One <interfaceDef> element and

58 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

must have one behavior
definition and one behavior
mechanism

one <mechanism> element must be
within <behaviorSec>

9. Every disseminator version
must have one datastream
binding map

STRUCTID attribute on
<behaviorSec> must reference a
<structMap> with a TYPE attribute
whose value is "fedoraBindMap"

10. Every disseminator version
must point to a Fedora audit trail
record

ADMID attribute on <behaviorSec>
must reference a metadata section
within an <amdSec> whose ID
attribute id "FEDORA-
AUDITTRAIL"

11. Every datastream and
disseminator version must have
a created date/time

CREATED attribute on <file>
required

CREATED attribute on
<behaviorSec> required

CREATED attribute on metadata
section (mdSecType) required

12. Every datastream and
disseminator version must have
a Component State indicator

STATUS attribute on <file>,
metadata section (mdSecType), and
<behaviorSec> required

13. Object State may only make
the following transitions
(before after):
 N A
 A W W A D W
 A D W D D A

RECORDSTATUS attribute on
<metsHdr> cannot change to a state
that violates the state transition
paths.

14. Component State may only
make the following transitions
(before after):
 A W W A D W
 A D W D D A
 A B B A

STATUS attribute on <file>,
metadata section, or <behaviorSec>
cannot change to a state that violates
the state transition paths.

9.0 Security Subsystem

The Security subsystem enables repository managers to define access control policies for
the repository. It also provides the mechanism to enforce these policies at runtime. In
Phase I, the basic repository management functions (API-M) will be secured through a
username/password scheme using simple HTTP authentication. Once authenticated, users
will either be allowed or denied access to API-M operations. In Phase I, API-A can be
protected using IP restriction. This minimal implementation will provide a simple means
of securing the repository while the Security Subsystem is under development for delivery

59 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

in Phase II. The Security Subsystem will be based as much as possible on existing and
emerging standards that are appropriate for the web services environment. This includes a
distributed authentication solution (e.g., Shibboleth), an XML policy expression language
(e.g., XACML, SAML, XrML), and a policy enforcement mechanism capable of
supporting fine-grained object-level policies.

10.0 Access Subsystem

10.1 API-A Implementation

The Access subsystem supports digital object reflection and disseminations of digital
object content. A digital object aggregates content in the form of datastreams, and
assigns behaviors (access methods) in the form of disseminators. A
disseminator references an abstract definition of a set of methods and a
mechanism (service) for running those methods. When clients issue dissemination
requests for a behavior method, supporting services are called to release
datastreams from the object, or provide transformations of the datastreams.
The Fedora Access subsystem acts as a service mediator for clients accessing digital
objects.

The primary function of the Fedora Access subsystem is to fulfill a client's request for
dissemination by evaluating the behavior associations specified in a digital object,
and figuring out how to dispatch a service request to an external service with which
the digital object associates. The Access subsystem facilitates all external service
bindings on behalf of the client, simply returning a dissemination result. A client can
be a web browser, a web application with embedded dissemination requests, or a
custom client built to interact with Fedora.

Clients can interact with the Access subsystem either via HTTP or SOAP. The
WSDL for each repository service defines bindings for both modes of
communication. In Phase I of the project, the HTTP GET/POST service bindings
connect to a Java Servlet running on Apache Tomcat, and SOAP bindings connect to
a SOAP-enabled web service running on Apache Axis with Tomcat.

10.1.1 Object Reflection Module – implements the two methods described in the

Access Service definition. The Object Reflection module enables clients to
discover the kinds of disseminations that are available on the object.

• GetBehaviorDefinitions – identifies the types of behavior

definitions the object subscribes to.
• GetBehaviorMethods – returns a data structure containing

definitions of the methods for a particular behavior definition
• GetBehaviorMethodsAsWSDL – returns a WSDL description of the

methods for a particular behavior definition
• GetObjectMethods – returns a data structure containing all method

definitions for a particular digital object.

60 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

The Object Reflection module is also linked with the Security subsystem and
the Storage subsystem. In Phase II of the project, the Security subsystem will
enable repository managers to define access control policies for methods in
the Object Reflection module. The Object Abstraction interface provides
access to the Storage subsystem that manages all data in the repository.

10.1.2 Dissemination Module – implements the dissemination method described in
the Access Service definition. The Dissemination module provides the sole
means of accessing content from digital objects.

The Dissemination module is also linked with the Security subsystem and the
Object Abstraction interface. The Security subsystem enables the application
of access control policies to each dissemination request at runtime. Note that
the Security subsystem is scheduled for Phase II of the project.

The Object Abstraction interface is used to access the relational database in the
Storage subsystem. In Phase I, the relational database replicates the
information contained in the XML-encoded digital objects for the most current
version of each object functioning as a cache to enhance performance and
retrieval. The relational database will probably be deprecated in later phases of
the project and dissemination requests will directly target the XML-encoded
digital objects. See Section 11.0 for additional information regarding the
relational database.

10.1.2.1 GetDissemination – runs a method on the digital object to produce a
dissemination.

10.1.2.2 Local and Built-in Behavior Mechanism Services Module – some

behavior services are local to the repository as opposed to being
external services and are accessible directly through the Local
Behavior Mechanism Services Module.

10.1.2.3 Dissemination Cache – the Dissemination cache provides enhanced

performance for frequently requested dissemination requests. Since
the implementation of API-A uses a Java Servlet, servlet caching is
used to enhance performance of dissemination requests.

10.2 WSDL for Behavior Mechanisms

A digital object aggregates content in the form of datastreams, and assigns
behaviors in the form of disseminators. A disseminator references a
behavior definition object and a behavior mechanism object. A
behavior definition object contains a special datastream whose content is a
WSDL definition of an abstract set of methods. A behavior mechanism object
contains a special datastream that is a WSDL definition describing the run-time
bindings to an external service for these abstract methods. In essence, the behavior

61 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

definition and behavior mechanism objects function as surrogates for external
services. The primary function of the Fedora Access subsystem is to satisfy a client's
request for dissemination by evaluating the behaviors specified in a digital object and
then dispatching a service request to an external service with which the digital object
associates. WSDL provides a standards-based way of expressing both the abstract
method definitions and the bindings to a external services in behavior
definition and behavior mechanism objects.

In the example depicted in Figure 3, a digital object has a Watermarker
disseminator that can dynamically apply a watermark to an image. The
disseminator has two notable attributes: a behavior definition identifier and
a behavior mechanism identifier that reference their respective behavior
definition and behavior mechanism objects. In this example, the service is
one for applying a watermark to an image. A behavior definition object
contains a special datastream whose content is a WSDL definition of abstract
methods for watermarked images (e.g., getImage). A behavior mechanism
object contains a special datastream that is a WSDL definition describing the run-
time bindings to an external service for these watermarking-related methods
(operations). Service bindings can be via HTTP GET/POST or SOAP. See
Appendix C for an example of a behavior mechanism object containing the
WSDL definitions for a simple image rendering service.

PID =
uva-lib:1225

Disseminators

Watermarker

bDefPID =
uva-bdef-image-w:101

bMechPID =
uva-bmech-image-w:112

System Metadata

Datastreams

Data Object

Fedora Repository

Remote
Water-
marker
Service

SO
A

P

http

Remote
Water-
marker
Service

H
TT

P

http

Behavior Definition Object

Behavior Mechanism Object

PID =
uva-bdef-image-w:101

Disseminators

System Metadata

Datastreams

WSDL
(method definitions)

(specifications)

PID =
uva-bmech-image-w:112

Disseminators

System Metadata

Datastreams

WSDL
(operations)
(bindings)

62 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Figure 5. WSDL for Behavior Mechanism Objects

11.0 Storage Subsystem

11.1 Internal Storage Interface Definition

The Access and Management APIs reflect upon and manipulate digital objects by
means of the reader/writer interfaces, Object Reader (DOReader) and Object Writer
(DOWriter). Concrete implementations of these interfaces encapsulate the code and
calls necessary to fulfill API-A and API-M requests.

When a digital object needs to be reflected upon or manipulated, the caller provides a
PID. This PID is passed in a call to the DOReaderFactory or DOWriterFactory’s
getReader() or getWriter() method, and a DOReader or Writer is returned,
respectively.

A DOReaderFactory and/or DOWriterFactory is provided to the Access or
Management subsystem by the Object Manager (DOManager). It is expected that
once a factory is obtained, a reference is kept by the caller if repeated calls to
getReader() and/or getWriter() is made.

The following diagram illustrates the top-down request flow on digital object
requests, assuming an appropriate DOReader or DOWriter has already been obtained
by the appropriate factory.

63 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

DefinitiveDOReader FastDOReaderDefinitiveDOWriter

API-AAPI-M

FedoraManagement FedoraAccess

FedoraManagementService FedoraManagementService

External Content
Retriever (HTTP,
FTP, etc)

Behavior
Mechanism
Request Resolver

Administrator End User

Administrative Client
Software Web Client Software

DOReaderDOWriter

DisseminatingDOReader

Digital Object Store

Contains complete XML
representations of digital
objects in the METS schema,
including all version information,
audit information, and datastreams.

Dissemination Database

Contains most recent versions
of digital objects' behavior
mechanism and datastream
mappings necessary for
making dissemination requests.

API-A-Lite (HTTP-Only Interface)

FedoraAccessServlet

FedoraAccessLite

Figure 6. Top-down Request Flow Diagram

11.2 Persistent Storage Implementation

The reference implementation stores digital objects in a partially redundant manner.
It is expected that in production, the majority of the calls to a fedora repository will
be getDissemination requests on the most recent version of digital objects. Much of
the information necessary for dissemination is stored in an SQL database to allow for
quicker performance.

11.2.1 Digital Object XML Storage

Digital Objects are stored in XML form in the METS schema on the
filesystem. DOReaders and DOWriters use this to read from and write to the
freshest copy of the information.

64 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

11.2.2 Digital Object Registry

The registry is used to tell the DOReaders and DOWriters where on disk a
digital object’s information is stored and to fulfill the API-M request to
enumerate all Digital Object PIDs. The registry is available via the
getRegistry() method of the DOManager. getRegistry() is a factory method
that provides an appropriate DORegistry object based on the configuration
parameters provided to the constructor of DOManager.

DORegistry provides the following methods:

File find(PID objId);
File register(PID objId);
string[] getAll();

11.2.3 Fedora Dissemination Database

The dissemination database is used to support high-performance
dissemination requests on digital objects. The database schema can be found
in Appendix D.

The database is used by FastDOReader. When providing a DOReader to the
Access subsystem, the DOReaderFactory takes care of ensuring that a
connection to the database is available to the reader.

12.0 Future: PID Resolver Service Implementation

12.1 General

A PID Resolution Service may become necessary in the future when multiple Fedora
repositories are collaborating. It will be a separate service, running independently of
any particular repository. The PID Resolution Service assumes multiple Fedora
repositories, and the need for some clients to determine which repository a particular
digital object is stored in. As mentioned earlier, a PID is a persistent identifier for a
digital object that does not imply the specific location of the digital object. The
Fedora PID Resolution Service will support one or more repositories by (1)
maintaining a database of PIDs and their current repository locations, (2) resolving
PIDs to their current location. Thus, clients (including a Fedora Repository, itself, as
a client) can make requests to the PID Resolution Service to find the current location
of any digital object represented by an existing PID. The location may change over
time if a digital object is moved to different repository, but the PID itself will remain
stable.

65 6/20/2003
 10:13 AM

Fedora Technical Specification
December 2002

Appendices

Appendix A: Example Digital Object

Please see attached file obj-sizer-image.xml

Appendix B: Example Behavior Definition Object

Please see attached file bdef-simple-image.xml

Appendix C: Example Behavior Mechanism Object

Please see attached file bmech-sizer-image.xml

Appendix D: Database Schema

Please see attached file db-schema.doc

Appendix E: Glossary

coming soon.

66 6/20/2003
 10:13 AM

